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't is also one of the most “dangerous

conjectures known — notorious for
absorbing massive amounts of time
from both professional and amateur
mathematicians.
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| Introduced by Lothar Collatz in
1937, the conjecture is also

known as the “3x+1 conjecture”

or the “Syracuse problem”.




The conjecture involves an innocuous function Col on the
natural numbers {1,2,3,...} defined by the following rule:

e Col(n)equals3n+1if nis odd.
* Col(n)equalsn/2ifniseven.

(odd)

N {13n+1

(even)

N 1 n/2




2 3 4 5 6 7 3 9 10

1 10 2 16 3 22 4 28 5
11 12 13 14 15 16 17 18 19 20
34 6 40 7 46 3 52 9 58 10
21 22 23 24 25 26 27 28 29 30
64 11 70 12 76 13 32 14 38 15




Now consider iterates of the Collatz
function Col, in which the output of
the function is fed back into the input:

Col? (
Col3(
etcC.

Col (Col (n))
Col (Col (Col(n)))

n
|

n
|




3 5 6 7 9 10
10 16 3 22 28 5
5 3 10 11 14 16
16 4 5 34 7 3
8 2 16 17 22 4
4 1 3 52 11 2
2 4 4 26 34 1
1 2 2 13 17 4




Every natural number n generates a
Collatz sequence (or Collatz orbit)
n Col(n),Col?(n),Col3(n), ..

n 1Col (n) Col? (n)




For instance, n=1 generates the

periodic Collatz sequence
1,4,2,1,4,2,1,4,2,1,..

1| 2




It a Collatz sequence reaches the
value 1, it will then cycle through the
values 1, 4, 2 indefinitely.

n 1 /




For instance, n=6 generates the
Collatz sequence
6, 3, 10,5,16,8,4,2,1,4,2,1,4, 2,
1,4,2,1,..

o 10 16 1 2




Collatz sequences are also known as
hailstone sequences, as they can bounce
up and down much like hailstones in a
cloud were thought to.

For instance, n=27 generates the Collatz sequence
27,82,41,124,62,31,94,47, 142,71, 214, 107, 322, 161, 484, 242, 121, 364, 182,
91, 274, 137,412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395,

1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566,
283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858,
2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616,
2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92,
46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8,4, 2,1, 4, 2,1, ...




Hail Formation
Hail too large
for cloud to hold Hail growing in circulating
falls to earth convection currents
causing strong
cold downdraft

Freezing Level

b
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CRain drops being sucked
into the updraft




Hail Formation
Hail too large
for cloud to hold Hail growing in circulating

falls to earth convection currents

causing strong

cold downdraft /
(Pedantic note: the modern theory of hailstone

formation deviates from this classical model, being

based instead on the properties of supercooled
- water droplets.)
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seguence eventually attains the value
]

But just as every hailstone eventually
falls to the ground, we have the
mfamous

CoIIatz conjecture. Every Collatz
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The 3x+1 problem: An annotated bibliography (1963--1999) (sorted by author)
Jeffrey C. Lagarias

(Submitted on 13 Sep 2003 (v1). last revised 11 Jan 2011 (this version, v13))

The 3%+ 1 problem concems iteration of the map on the integers given by T(n) = (3n+1)2 if nis odd; T(n) = n/2 if n is even. The 3x+1 Conjecture asserts that for every positive integer n = 1 the forward orbit of n under iteration by T includes the integer 1. This paper
is an annotated bibliography of work done on the 3x+1 problem and related problems from 1983 through 1999. At present the 3x+1 Conjecture remains unsolved.

Commenis: 74 pages Iate. econd title change to distinguish from 3x+1 book; first title change indicates abridgment of earlier versions to papers 1999 and earlier ; part || now covers papers 2000 and later, see arXiv.math NT/0608208; v.11 cutoff date changed from 2000 to 1999, v.13 added
Oulipo references

Despite hundreds of published papers on the
Collatz conjecture, and many more
unpublished works (including countless failed
proofs), the conjecture remains unsolved
today.

The 3x+1 Problem: An Annotated Bibliography, Il (2000-2009)
Jeffrey C. Lagarias

(Submifted on 9 Aug 2006 (v1), last revised 12 Feb 20112 (this version, vE])

The 3x+1 problem concems iteration of the map T(n) =(3n+1)/2 if n odd; n/2 if n even. The 3x +1 Conjecture asseris that for every positive integer n>1 the forward orbit of n includes the integer 1. This paper is an annotated bibliography of work done on the 3x+1
problem published from 2000 through 2009, plus some later papers that were preprints by 2009. This is a sequel to an annotated bibliography on the 3x+1 problem covering 1963-1999.

At present the 3x+1 Conjecture remains unsolved.

Commenis: 42 pages; will be periodically updated, cover papers till 2009+ later papers preprints by 2009; sequel to arXivmath NT/0308224; v4 now runs from 2000 rather than 2001, 121 entries; v5 40 pages, 126 entries, va 42 Dag



“For about a month everyone at Yale worked on it, with
no result. A similar phenomenon happened when |
mentioned it at the University of Chicago. A joke was
made that this problem was part of a conspiracy to slow
down mathematical research in the U.S.” — Shizuo
Kakutani, 1960

“This is an extraordinarily
difficult problem, completely
out of reach of present day
mathematics.” — Jeff Lagarias,
2010 | 8

“Mathematics is not yet ripe
enough for such questions.” —
Paul Erdds, 1983




XKCD, Randall Monroe,
March 5, 2010

THE COULATZ CONJECTURE STATES THAT IF YOU
PICK. A NUMBER, AND IF 1T5EVEN DIVIDE (T BY
TwWO AND IF 1T5 00D MULTIPLY IT By THREE AND
ADD ONE, AND YoU REPEAT THIS PROCEDURE. LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WILL SToP
CALUNG TD SEE IF YOU WANT TO HANG OUT.



The Collatz conjecture appears to be
 a mere mathematical curiosity, with

no obvious real-world applications.
Why should we try to solve it?




Pure intellectual challenge

A benchmark for testing our understanding of
number theory

Proof attempts have linked the problem to other
areas of mathematics

't is a simple, but non-trivial, toy model of a
dynamical system

Modest cash prizes (S50, Harold Coxeter; S500,
Paul Erdds; £1000, Sir Bryan Thwaites)

Bragging rights
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Mathematically speaking, a (discrete)

dynamical system is a state space X,
together with a shift map T from X to

itself. The iterates T, T2, T3, ... describe
the dynamics of the system.




A A

In the Collatz dynamical system, the
state space is the natural numbers N

=1{1,2,3,...} and the shift map is the
Collatz map Co1l.




AN\ ~\

A sibling to the discrete dynamical
systems are the continuous dynamical
systems, where the dynamics are given

bv ordinary differential equations

(ODE) or partial differential equations
(PDE).




AN\ %

Many important real-world systems,
such as fluids, ecosystems, and the

climate, can be viewed as
(continuous) dynamical systems.




AN\ %

The Collatz conjecture highlights the
basic fact that even very simple

equations can lead to amazingly
complicated dynamics.
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It is also useful to locate obstructions —such as &

counterexamples to related problems that
highlight difficulties that have to be overcome
In any proposed solution.




What and 4
obstructions do we have for the .§
Collatz conjecture?




in 2017, a distributed
computing project verified the Collatz
we | cONjecture for all starting values n up to 104°.
So it is high(I:Y unlikely that a counterexample
can be found just from pen and paper search. ‘
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One way the Collatz conjecture could fail is
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\‘\
K
.
f
\

repeats itself indefinitely — other than the
~4 knowncycle 1, 2,4,1, 2, 4,.. (or|ts sh|fts)
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1993). So one cannot simply produce a short
~ cycle to easily disprove the conjecture!
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1 variants of the Collatz conjecture that have non-

Obstruction: On the other hand, there are

trivial cycles. For instance, if one modifies Col
by sending an odd number n to 3n-1 rather than
3n+1, then two additional cycles appear:

N/ N[ N N N[ N[ N[\

1 17,50, 25,74,37,110, 55, 164, 82,41, 122, 61,

1map.

 5,14,7/, 20, 10, 5,...
192,91, 272,136, 68, 34, 17/,...

We don’t know if there are any further cycles for this
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| This obstruction shows that any proof
of the Collatz conjecture must at some
point use a property of the 3n+1 map
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that is not shared by the 3n-1 map. ™
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Obstruction: the absence of non-trivial
Collatz cycles can be shown to imply a
difficult result in number theory:

Theorem: The gap between
powers of 2 and powers of 3 goes
to infinity.

32-23=9-8=1; 2°-33=32-27=5; 28-3°5=256-243=13; 37-211=2187-2048 = 139; ...

Basically, if a power of 2 and power of 3 are
too close together, they can be used to
create a Collatz cycle.




Theorem: The gap between powers
of 2 and powers of 3 goes to infinity.

= % | This theorem is known to be true, but
‘ its proof is difficult, requiring a deep
result known as Baker’s theorem
(which earned Alan Baker the Fields
medal in 1970).

So solving the Collatz conjecture may
be at least as hard as proving Baker’s
theorem!




to work backwards and show that

ers get sent to 1 by the
Collatz iteration.

Y
lots and lots of numbers
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Partial result: in 2003, Krasikov and

Lagarias showed (with a computer-assisted

oroof) that for any large number x, there
were at least xV%* nitial values n between
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n 1987, John H. Conway
invented a computer
anguage called FRACTRAN,
iIn which every program was a
variant of the Collatz function
Col. The output of
sequences could be used to
perform mathematical
computations!




For instance, the FRACTRAN pro
any natural number n to the num

defined to equal

 17n/91if nis divisible by 91;
» 78n/85 if n is divisible by 85;
* 19n/51 if nis divisible by 51;
* 23n/38if nis divisible by 38;
* 29n/33if nis divisible by 33;
e 77n/29if nis divisible by 29;
* 95n/23if nis divisible by 23;
e 77n/19if n is divisible by 19;

else
else
else
else
else
else
else
else

* n/17 if nis divisible by 17; else

 11n/13if nis divisible by 13;
 13n/11if nis divisible by 11;

else
else

e 15n/2if nis divisible by 2; else

* n/7 if nis divisible by 7; else

* 55n.

b

ram Prime maps
er Prime(n),



Remarkable fact: the Prime orbit
2, Prime(2), Prime?(2), Prime3(2), ...

contains precisely the powers 2P of 2 whose exponents are
primes (together with many non-powers of two). This
FRACTRAN program computes primes!

| S = R b bbb P L e

§In fact, FRACTRAN is Turing Complete. Roughly
B speaking, this means that any computation that
can be performed by an ordinary computer, can
g also be computed by a FRACTRAN program!




Obstruction: There are FRACTRAN
program sequences for which it is

undecidable whether they will ever &

reach a certain target value no.
! Aq ¥ F“r Po l* ! -

Thls | related to the
undecidability of the halting
oroblem for Turing Machines.




This obstruction demonstrates that there is NO &
general algorithm that can definitively resolve all |
guestions resembling the Collatz conjecture.

@ Any solution to that conjecture must use special :; -
B properties of the Collatz map Col that are not
= shared by general FRACTRAN programs.
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Partial result: we have a convincing (but

non-rigorous) heuristic argument that
predicts the truth of the Collatz
conjecture.

Lalemesnty




‘he argument proceeds like this. The Collatz

map Col can take an odd number n to a larger

number 3n+1. But this new number 3n+1 is

necessarily even, so the next application of
Col will divide it by 2.

N 13n+1 (3n+1)/2




Heuristically, there is a fifty-fifty chance that the number
(3n+1)/2 will also be even, leading to further divisions by 2.
Indeed, a probability theory calculation reveals that the
“expected number” of divisions by 2 one experiences
before reaching an odd number again is equal to two.

N 1 3n+1 (3n+1)/2 (3n+1)/4




As a consequence, if one starts with an odd number n, the
next odd number in the Collatz sequence would be
expected to equal approximately 3n/4 on the average.
Thus the average size of the odd numbers in the sequence
will decrease towards 1, which supports the validity of the
Collatz conjecture.

N 1 3n+1 (3n+1)/2 (3n+1)/4




This heuristic also predicts that some variants

of the Collatz map, such as the 5n+1 map, will

have orbits that go to infinity. This appears to
be supported by numerics.

N 1 5n+1 (5n+1)/2 (5n+1)/4

7,36, 18,9, 46, 23, 116, 58, 29, 146, 73, 366, 183, 916, 458, 229, 1146, 573, 2866, 1433, 7166, 3583, 17916, ...
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vert these heuristics
results by workin
ng the behavior o

almost all Collatz orbits, rather than all
orbits, thus excluding “outliers”.
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Partial result: in 1976, Terras showed that
almost all initial values n eventuall
iterated to a value less than n. (As a rst
approximation, think of “almost all” a
meaning “at least 99.99% of all”. )

(almost all)

[ Y <N




If one could show that all initial val

UeS

n (other than 1) iterated to somett
less than n, this would imply the Co
conjecture by further iteration.

INg
latz

(all except 1?)




Partial result: Terras’s result was refined
over the years. In 1979, Allouche showed
that almost all initial values n eventually
iterated to a value less than nY-s%°,

(almost all)

nl . | <« 0.869




Partial result: in 1994, Korec

lowered this bound further to
I’)O'7925.

(almost all)

n | | < 10.7925




Partial result: In 2019, | showed that almost all
initial values n eventually iterated to a value
less than f(n), for any function f{) that grew to
infinity, no matter how slowly. “Almost all
Collatz orbits attain almost bounded values.”

(almost all)

N S I < f(n)




values n eventually iterate to a
value less than log(log(log(log(n)))).

For instance: almost all initial

(almost all)

[

—— ... —<log(log(log(log(n)))).




This is about as close as one can
cget to the Collatz conjecture
without actually solving it.

(all?)

N - 1




Unfortunately, the statistical methods
used in the proof seem to be unable to
fully resolve the conjecture, which
remains out of reach for now.




The argument was inspired br other dynamical
systems results, and in particular by a 1994 result
of Bourgain on constructing an invariant measure

for the nonlinear Schrodinger equation.
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A key di

that it ca

fficulty with the Collatz iteration is
n greatly distort the distribution of a

set of nL

mbers —some numbers collide into

each other, others get skipped entirely.
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As a consequence, the statistical
behavior of Collatz iteration quickly
becomes intractable to study.

112]13]4]5|6|7(8

11>13[4 10| ... |16]... fzz
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However, | was able to construct an
(approximate) invariant measure — a distribution
of numbers that iterates to something
resembling a smaller version of itself.

(plus or minus a small error)




lterating this fact gives the result.

(after 49 pages of argument)

u

U

ﬁ l ; (plus or minus a small error)

(plus or minus a small error)

ﬁ Ii (plus or minus a small error)
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istening!




