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The Collatz conjecture is one of 
the most elementary unsolved 

problems in mathematics.



It is also one of the most “dangerous” 
conjectures known – notorious for 

absorbing massive amounts of time 
from both professional and amateur 

mathematicians.



Introduced by Lothar Collatz in 
1937, the conjecture is also 

known as the “3x+1 conjecture” 
or the “Syracuse problem”.



The conjecture involves an innocuous function Col on the 
natural numbers {1,2,3,…} defined by the following rule:

• Col(n) equals 3n+1 if n is odd.
• Col(n) equals n/2 if n is even.

n 3n+1

(odd)

n n/2

(even)



n 1 2 3 4 5 6 7 8 9 10

Col(n) 4 1 10 2 16 3 22 4 28 5

n 11 12 13 14 15 16 17 18 19 20

Col(n) 34 6 40 7 46 8 52 9 58 10

n 21 22 23 24 25 26 27 28 29 30

Col(n) 64 11 70 12 76 13 82 14 88 15



Now consider iterates of the Collatz
function Col, in which the output of 

the function is fed back into the input:

Col2(n) = Col(Col(n))

Col3(n) = Col(Col(Col(n)))

etc.



n 1 2 3 4 5 6 7 8 9 10

Col(n) 4 1 10 2 16 3 22 4 28 5

Col2(n) 2 4 5 1 8 10 11 2 14 16

Col3(n) 1 2 16 4 4 5 34 1 7 8

Col4(n) 4 1 8 2 2 16 17 4 22 4

Col5(n) 2 4 4 1 1 8 52 2 11 2

Col6(n) 1 2 2 4 4 4 26 1 34 1

Col7(n) 4 1 1 2 2 2 13 4 17 4



Every natural number n generates a 
Collatz sequence (or Collatz orbit)

n, Col(n), Col2(n), Col3(n), … 

n Col(n) Col2(n) …



For instance, n=1 generates the 
periodic Collatz sequence
1, 4, 2, 1, 4, 2, 1, 4, 2, 1,… 

1 2

4



If a Collatz sequence reaches the 
value 1, it will then cycle through the 

values 1, 4, 2 indefinitely.

n … 1 2

4



For instance, n=6 generates the 
Collatz sequence

6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 
1, 4, 2, 1,… 

6 1 2

43

10

5

16

8



Collatz sequences are also known as 
hailstone sequences, as they can bounce 

up and down much like hailstones in a 
cloud were thought to.

For instance, n=27 generates the Collatz sequence
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 
91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 

1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 
283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 

2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 
2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 

46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …





(Pedantic note: the modern theory of hailstone 
formation deviates from this classical model, being 

based instead on the properties of supercooled 
water droplets.)



But just as every hailstone eventually 
falls to the ground, we have the 

infamous

Collatz conjecture.  Every Collatz
sequence eventually attains the value 

1.



Despite hundreds of published papers on the 
Collatz conjecture, and many more 

unpublished works (including countless failed 
proofs), the conjecture remains unsolved 

today.



“Mathematics is not yet ripe 
enough for such questions.” –
Paul Erdős, 1983

“This is an extraordinarily 
difficult problem, completely 

out of reach of present day
mathematics.” – Jeff Lagarias, 

2010

“For about a month everyone at Yale worked on it, with 
no result.  A similar phenomenon happened when I 

mentioned it at the University of Chicago. A joke was 
made that this problem was part of a conspiracy to slow 

down mathematical research in the U.S.” – Shizuo
Kakutani, 1960



XKCD, Randall Monroe, 
March 5, 2010



The Collatz conjecture appears to be 
a mere mathematical curiosity, with 
no obvious real-world applications.  

Why should we try to solve it?



• Pure intellectual challenge
• A benchmark for testing our understanding of 

number theory
• Proof attempts have linked the problem to other 

areas of mathematics
• It is a simple, but non-trivial, toy model of a 

dynamical system
• Modest cash prizes ($50, Harold Coxeter; $500, 

Paul Erdős; £1000, Sir Bryan Thwaites)
• Bragging rights



Mathematically speaking, a (discrete) 
dynamical system is a state space X, 

together with a shift map T from X to 
itself.  The iterates T, T2, T3, … describe 

the dynamics of the system.



In the Collatz dynamical system, the 
state space is the natural numbers N
= {1,2,3,…} and the shift map is the 

Collatz map Col.



A sibling to the discrete dynamical 
systems are the continuous dynamical 
systems, where the dynamics are given 

by ordinary differential equations
(ODE) or partial differential equations

(PDE).



Many important real-world systems, 
such as fluids, ecosystems, and the 

climate, can be viewed as 
(continuous) dynamical systems.



The Collatz conjecture highlights the 
basic fact that even very simple 
equations can lead to amazingly 

complicated dynamics.



In mathematics, when we cannot solve a 
problem completely, we look for partial 

results.  Even if they do not lead to a 
complete solution, they often reveal 

insights about the problem.



It is also useful to locate obstructions – such as 
counterexamples to related problems that 

highlight difficulties that have to be overcome 
in any proposed solution.



What partial results and 
obstructions do we have for the 

Collatz conjecture?



Partial result: in 2017, a distributed 
computing project verified the Collatz

conjecture for all starting values n up to 1020.  
So it is highly unlikely that a counterexample 

can be found just from pen and paper search.



One way the Collatz conjecture could fail is 
if there is a cycle – a Collatz sequence that 
repeats itself indefinitely – other than the 
known cycle 1, 2, 4, 1, 2, 4,… (or its shifts).



Partial result: it is known that any such cycle 
must have length at least 17,087,915. (Eliahou, 
1993).  So one cannot simply produce a short 

cycle to easily disprove the conjecture!



Obstruction: On the other hand, there are 
variants of the Collatz conjecture that have non-
trivial cycles. For instance, if one modifies Col

by sending an odd number n to 3n-1 rather than 
3n+1, then two additional cycles appear:

• 5, 14, 7, 20, 10, 5,…
• 17, 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 

192, 91, 272, 136, 68, 34, 17,…

We don’t know if there are any further cycles for this 
map.



This obstruction shows that any proof 
of the Collatz conjecture must at some 
point use a property of the 3n+1 map 

that is not shared by the 3n-1 map.



Obstruction: the absence of non-trivial 
Collatz cycles can be shown to imply a 

difficult result in number theory:

Theorem: The gap between 
powers of 2 and powers of 3 goes 
to infinity.

32-23 = 9-8 = 1; 25-33 = 32-27 = 5; 28-35 = 256-243 = 13; 37-211= 2187-2048 = 139; …

Basically, if a power of 2 and power of 3 are 
too close together, they can be used to 

create a Collatz cycle.



Theorem: The gap between powers 
of 2 and powers of 3 goes to infinity.

This theorem is known to be true, but 
its proof is difficult, requiring a deep 

result known as Baker’s theorem
(which earned Alan Baker the Fields 

medal in 1970).

So solving the Collatz conjecture may 
be at least as hard as proving Baker’s 

theorem!



One can try to work backwards and show that 
lots and lots of numbers get sent to 1 by the 

Collatz iteration.



Partial result: in 2003, Krasikov and 
Lagarias showed (with a computer-assisted 

proof) that for any large number x, there 
were at least x0.84 initial values n between 
1 and x whose Collatz iteration reached 1.



In 1987, John H. Conway 
invented a computer 
language called FRACTRAN, 
in which every program was a 
variant of the Collatz function 
Col.  The output of 
sequences could be used to 
perform mathematical 
computations!



For instance, the FRACTRAN program Prime maps 
any natural number n to the number Prime(n), 
defined to equal

• 17n/91 if n is divisible by 91; else
• 78n/85 if n is divisible by 85; else
• 19n/51 if n is divisible by 51; else
• 23n/38 if n is divisible by 38; else
• 29n/33 if n is divisible by 33; else
• 77n/29 if n is divisible by 29; else
• 95n/23 if n is divisible by 23; else
• 77n/19 if n is divisible by 19; else
• n/17 if n is divisible by 17; else
• 11n/13 if n is divisible by 13; else
• 13n/11 if n is divisible by 11; else
• 15n/2 if n is divisible by 2; else
• n/7 if n is divisible by 7; else
• 55n.



Remarkable fact: the Prime orbit 

2, Prime(2), Prime2(2), Prime3(2), … 

contains precisely the powers 2p of 2 whose exponents are 
primes (together with many non-powers of two).  This 
FRACTRAN program computes primes!

In fact, FRACTRAN is Turing Complete.  Roughly 
speaking, this means that any computation that 
can be performed by an ordinary computer, can 
also be computed by a FRACTRAN program!



Obstruction: There are FRACTRAN
program sequences for which it is 

undecidable whether they will ever 
reach a certain target value n0.

This is related to the 
undecidability of the halting 

problem for Turing Machines.  



This obstruction demonstrates that there is NO 
general algorithm that can definitively resolve all 

questions resembling the Collatz conjecture.  

Any solution to that conjecture must use special 
properties of the Collatz map Col that are not 

shared by general FRACTRAN programs.



Partial result: we have a convincing (but 
non-rigorous) heuristic argument that 

predicts the truth of the Collatz
conjecture.



The argument proceeds like this.  The Collatz
map Col can take an odd number n to a larger 

number 3n+1.  But this new number 3n+1 is 
necessarily even, so the next application of 

Col will divide it by 2.

n 3n+1 (3n+1)/2



Heuristically, there is a fifty-fifty chance that the number 
(3n+1)/2 will also be even, leading to further divisions by 2.  

Indeed, a probability theory calculation reveals that the 
“expected number” of divisions by 2 one experiences 
before reaching an odd number again is equal to two. 

n 3n+1 (3n+1)/2 (3n+1)/4



As a consequence, if one starts with an odd number n, the 
next odd number in the Collatz sequence would be 

expected to equal approximately 3n/4 on the average.  
Thus the average size of the odd numbers in the sequence 
will decrease towards 1, which supports the validity of the 

Collatz conjecture. 

n 3n+1 (3n+1)/2 (3n+1)/4



This heuristic also predicts that some variants 
of the Collatz map, such as the 5n+1 map, will 
have orbits that go to infinity.  This appears to 

be supported by numerics.

n 5n+1 (5n+1)/2 (5n+1)/4

7, 36, 18, 9, 46, 23, 116, 58, 29, 146, 73, 366, 183, 916, 458, 229, 1146, 573, 2866, 1433, 7166, 3583, 17916, …



One can partially convert these heuristics 
into rigorous partial results by working 
statistically – studying the behavior of 

almost all Collatz orbits, rather than all
orbits, thus excluding “outliers”.



Partial result: in 1976, Terras showed that 
almost all initial values n eventually 

iterated to a value less than n. (As a first 
approximation, think of “almost all” as 

meaning “at least 99.99% of all”.)

n … <n

(almost all)



If one could show that all initial values 
n (other than 1) iterated to something 

less than n, this would imply the Collatz
conjecture by further iteration.

n … <n

(all except 1?)



Partial result: Terras’s result was refined 
over the years.  In 1979, Allouche showed 
that almost all initial values n eventually 

iterated to a value less than n0.869. 

n … < n0.869

(almost all)



Partial result: in 1994, Korec
lowered this bound further to

n0.7925.

n … < n0.7925

(almost all)



Partial result: In 2019, I showed that almost all 
initial values n eventually iterated to a value 

less than f(n), for any function f() that grew to 
infinity, no matter how slowly. “Almost all 

Collatz orbits attain almost bounded values.”

n … < f(n)
(almost all)



For instance: almost all initial 
values n eventually iterate to a 

value less than log(log(log(log(n)))). 

n … < log(log(log(log(n)))). 

(almost all)



This is about as close as one can 
get to the Collatz conjecture 
without actually solving it.

n … 1

(all?)



Unfortunately, the statistical methods 
used in the proof seem to be unable to 

fully resolve the conjecture, which 
remains out of reach for now.



The argument was inspired by other dynamical 
systems results, and in particular by a 1994 result 
of Bourgain on constructing an invariant measure

for the nonlinear Schrödinger equation.



A key difficulty with the Collatz iteration is 
that it can greatly distort the distribution of a 
set of numbers – some numbers collide into 

each other, others get skipped entirely.

1 2 3 4 5 6

1 2 4 10 16

7 8

3
4

22… …



As a consequence, the statistical 
behavior of Collatz iteration quickly 

becomes intractable to study.

1 2 3 4 5 6

1 2 4 10 16

7 8

3
4

22… …



However, I was able to construct an 
(approximate) invariant measure – a distribution 

of numbers that iterates to something 
resembling a smaller version of itself.

(plus or minus a small error)

(a certain variable number of iterations)



Iterating this fact gives the result.

(plus or minus a small error)

(plus or minus a small error)

(plus or minus a small error)

(after 49 pages of argument)



Thanks for 
listening!


