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Abstract

This chapter describes a theory of martensitic microstructure. The theory explains why marten-
sites form microstructure and describes how this microstructure depends, often delicately, on the
crystalline symmetry and the lattice parameters. The shape-memory e�ect is analyzed with this
theory and it is shown that only very special materials { those that satisfy signi�cant restrictons
on their symmery and lattice parameters { can display this e�ect.

1 Introduction

Martensitic phase transformation is observed in various metals, alloys, ceramics and even biological
systems. In this solid to solid phase transformation, the lattice or molecular structure changes
abruptly at some temperature. The change is sudden, so a graph of lattice parameter vs. tempera-
ture shows a marked discontinuity. Further, there is no di�usion or rearrangement of atoms during
this transformation. Therefore, this transformation is often said to be a displacive �rst-order phase
transformation.

Martensitic phase transformations have many important technological implications. The oldest,
and by far the most signi�cant, is its role in strengthening steel. A recent volume edited by Olson
and Owen [1] provides an interesting overview of the history, signi�cance and scienti�c interest
in this phase transformation. The shape-memory e�ect is one technological manifestation of this
transformation that has received much attention in the recent years. A recent proceeding of the
International Conference on Martensitic Transformations [2] gives a glimpse of the interest in the
shape-memory e�ect.

The most characteristic observable feature of a martensitic transformation is the microstruc-
ture it produces. In a typical transformation, the high-temperature austenite phase has greater
crystallographic symmetry than the low-temperature martensite phase. This gives rise to multiple
symmetry-related variants of martensite. These variants of martensite form complex patterns at a
length-scale much smaller than the size of the specimen. The actual length-scale can range from
a few nanometers to tenths of millimeters and it depends on a variety of factors including the
material, specimen size, grain size and history. The microstructure endows the material with its
properties.

The goal of this chapter is to present a theory that explains the formation and describes various
important aspects of this microstructure. This is a continuum theory, built on the framework of
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thermoelasticity. It is phenomenological to the extent that it starts with the observation of the
transformation. The change in symmetry and the transformation strain are its only inputs. It
shows that the microstructure arises as a consequence of energy minimization. More importantly,
it predicts various aspects of the microstructure, and consequently the macroscopic properties, with
no further assumptions.

A particular point of interest is the shape-memory e�ect. A whole host of materials undergo
martensitic transformation; however, negligibly few display the shape-memory e�ect. This chapter
explores the crystallographic reasons that make shape-memory alloys special amongst martensites.
We will see that the shape-memory e�ect requires special changes in symmetry and also very
delicate relations between the lattice parameters. This issue has important technological relevance.
Despite the vast potential, the incorporation of shape-memory alloys into applications has been
slow. Though a sizable number of alloys are known, applications have essentially been limited
to Nickel-Titanium (at compositions close to equiatomic) for a variety of reasons. The high cost
of NiTi as well as the narrow temperature range in which it can be used have placed additional
limitations. Therefore, it is important to improve and stabilize the shape-memory e�ect in known
materials and develop new materials.

This chapter draws heavily on the recent advances in the mathematical modeling and analysis
of martensites. These unfortunately have often been inaccessible to some. This chapter is an
attempt to overcome this. Therefore, it is not a comprehensive or up-to-date review. Instead, it is
an attempt to explain the main ideas and give a 
avor of the results.

I have assumed only a college-level knowledge of mathematics. I believe that the essential
concepts can be explained at this level and I have tried to do so. Consequently, I have taken some
liberties with the jargon and some technical details. Also, some of the calculations are longer that
they need to be. However, I have consciously decided not to hide the mathematics. I hope that I
have been able to convey the bene�ts of a mathematical approach through this.

This is a very good point to refer to some related literature outside of this book and the original
papers. Saburi and Nenno [3], Tadaki, Otsuka and Shimizu [4], Miyazaki and Otsuka [5] and
Wayman [6] are excellent reviews of the shape-memory e�ect. The book by Wayman [7] is a classic
summary of the crystallographic theory. The theory presented in this chapter builds on the ideas
presented in these and attempts to make them quantitative and consequently predictive. The book
by Ball and James [8] is a detailed exposition of the theory presented here and its results.

The rest of the introduction is a road map through this chapter. I have tried to begin every
section with the simplest and the most essential elements; so a reader stuck at one point can
move over to the next subsection during the �rst reading. We begin with a brief introduction to
vector algebra and the continuum description of deformation in Sec. 2. Sec. 3 provides a general
introduction to a continuum theory of crystalline solids.

The martensitic phase transformation is introduced in Sec. 4. It discusses the transformation
or Bain matrix, the variants, the energy wells and other important concepts. I have tried to keep
this section self-contained to the extent that a reader familiar with martensitic transformations can
directly proceed to Sec. 4 and refer back to Secs. 2 and 3 whenever necessary.

Sec. 5 discusses twinning. It shows that all the twinning modes and their crystallographic details
can be obtained as a consequence of symmetry and the transformation matrix. This gives a glimpse
of how much one can predict from the easily measurable quantities { symmetry and transformation
matrix.

Sec. 6 shows that energy minimization with many variants naturally results in microstructure.
This section also introduces a very nice way of describing a microstructure through a sequence of
deformations with �ner and �ner details.

Some important examples of microstructure are discussed in Sec. 7. These examples show that
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the theory can accurately predict various crystallographic details of the microstructure. The �rst is
the austenite-martensite interface. We show that we can derive the well-known crystallographic or
phenomenological theory of martensite. This theory proposed independently by Wechsler, Lieber-
man and Read[9] as well as Bowles and Mackenzie[10], arguably far ahead of its time, is one of
the most signi�cant results in this subject. The current presentation following Ball and James [11]
derives it as a consequence of energy minimization and does not require the a priori knowledge of
the twinning modes etc. Further, putting these ideas in a systematic framework allows us to extend
them to other situations. We do so with the wedge-like microstructure. This is a very interesting
example. We will see that only very special materials, those whose lattice parameters satisfy some
rather strict restrictions, can form this microstructure. This shows us that the microstructure and
consequently the macroscopic properties can depend very delicately on the lattice parameters.

Following these methods one can construct a whole host of microstructures. However, we can
not address the following question { can a material form a microstructure which satis�es some given
boundary condition? An example of such a question is, can a material form a self-accommodating
microstructure? If we are lucky or su�ciently innovative, we can successfully construct one. On the
other hand, if we are unable to do so, we can never decide whether such a microstructure is simply
not possible or whether we should try harder. Further, constructing a complicated microstructure
requires very cumbersome calculations. All this points to the need for more general tools to address
such questions. We discuss the average compatibility conditions or the minors relations in Sec. 8.
These are simple algebraic restrictions that all microstructures must satisfy. Therefore, it provides
a very easy check for deciding whether some microstructure is possible.

We discuss the shape-memory e�ect in single crystals in Sec. 9. We begin with self-accommodation.
The results show that a material with a cubic austenite that undergoes a volume-preserving trans-
formation can always form a self-accommodating microstructure. A material whose symmetry is
not cubic, on the other hand, has to satisfy some impossibly strict restriction on its lattice parame-
ters in order to be self-accommodating. This explains why all the shape-memory alloys have cubic
austenite and undergo volume-preserving transformation. We then discuss recoverable strains un-
der both load and displacement control. We see that relatively little is known under displacement
control. Sec. 10 brie
y discusses polycrystals. Sec. 11 gathers the important ideas and results
including the implications for the shape-memory e�ect.

2 Review of Linear Algebra and Continuum Mechanics

In this section, we quickly review some basic aspects of linear algebra and some basic kinematic
concepts of continuum mechanics. A reader who �nds this review insu�cient is referred to some
standard books on continuum mechanics like [12, 13, 14]. We con�ne our attention to three dimen-
sions.

2.1 Vectors and Matrices

We denote vectors using bold lower-case Roman letters and their components with respect to
a \rectangular Cartesian basis" using plain lower-case Roman letters with one subscript. For
example,

a = fa1; a2; a3g: (2.1)

We denote the dot product or inner product between two vectors a and b as a � b. Recall that

a � b = a1b1 + a2b2 + a3b3: (2.2)
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Rather than writing such long formulas, we use the summation convention where repeated indices
are summed. Using this convention,

a � b = aibi: (2.3)

We denote 3 � 3 matrices using bold upper-case Roman letters and their components using
plain upper-case Roman letters with two subscripts. For example,

A =

0
B@ A11 A12 A13

A21 A22 A23

A31 A32 A33

1
CA : (2.4)

From now on, whenever we say matrix, we mean a 3�3 matrix. In any �xed rectangular Cartesian
basis, a matrix de�nes a linear transformation or a tensor. Therefore, it maps one vector into
another. For example, consider the equation

b = Aa (2.5)

which can be written in standard matrix notation as0
B@ b1
b2
b3

1
CA =

0
B@ A11 A12 A13

A21 A22 A23

A31 A32 A33

1
CA
0
B@ a1
a2
a3

1
CA : (2.6)

This equation says that the matrix A takes the vector a to vector b or the the matrix A acts on
the vector a to give us vector b. We can use the summation convention to rewrite Eq. (2.6) as

ai = Aijbj for i = 1; 2; 3: (2.7)

According to the summation convention, the repeated index j is summed. Thus, we have three
equations

b1 = A11a1 +A12a2 + A13a3
b2 = A21a1 +A22a2 + A23a3
b3 = A31a1 +A32a2 + A33a3

(2.8)

where the �rst line corresponds to i = 1, the second to i = 2 and the third to i = 3. Whenever it
is clear from the context, we will omit the phrase \for i = 1; 2; 3".

We now de�ne a matrix which will play a crucial role in the discussion of coherence. Given
any two vectors a and b, the matrix a
 b (pronounced a tensor b or a dyadic b) has components
(a
 b)ij = aibj for i; j = 1; 2; 3, or

a
 b =

0
B@ a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

1
CA : (2.9)

To understand this matrix, let it act on any vector v. It is easy to verify that

(a 
 b)v = (b � v)a (2.10)

Therefore, it takes any vector v to a vector which is parallel to a and whose magnitude is propor-
tional to (b � v). In particular, if v is perpendicular to b, the result is the zero vector.
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F�1 denotes the inverse of the matrix F, FT denotes the transpose and F�T the inverse of the
transpose or the transpose of the inverse. detF denotes the determinant of F while cof F denotes
the cofactor matrix of F. All thes have their usual meaning. In particular, if detF 6= 0, then

cof F = (detF)F�T : (2.11)

We say that Q is a rotation if QQT = QTQ = I and detQ = 1 where I is the identity matrix.
We say that Q is a re
ection or inversion if QQT = QTQ = I and detQ = �1.

We say that U is symmetric if U = UT . A symmetric matrix has three real eigenvalues
f�1; �2; �3g; further we can choose eigenvectors fê1; ê2; ê3g corresponding to the eigenvalues above
such that they are mutually perpendicular unit vectors. We say that U is positive-de�nite if
a �Ua > 0 (or aiUijaj > 0 in components) for all vectors a 6= 0. All eigenvalues of a symmetric
positive-de�nite matrix are positive.

We are now in a position to state a very important result. We will use this result in the next
section to decompose any deformation into a pure stretch and a rotation.

Theorem 2.1. Polar decomposition theorem. Consider any matrix F with detF > 0. There exists
an unique rotation Q and an unique positive-de�nite symmetric matrix U such that

F = QU: (2.12)

In fact, U =
p
FTF and Q = FU�1. We can calculate these using the following procedure.

Procedure 2.2. Procedure to calculate the polar decomposition.

1. Calculate the matrix C = FTF. It is possible to verify that C is symmetric and positive-
de�nite.

2. Calculate the eigenvalues f
1; 
2; 
3g of C and the corresponding mutually perpendicular
eigenvectors fû1; û2; û3g. Automatically, 
i > 0 because C is positive-de�nite.

3. Calculate �i =
p

i; i = 1; 2; 3 taking care to choose the positive root so that �i > 0.

4. U is the matrix with eigenvalues f�1; �2; �3g and corresponding eigenvectors fû1; û2; û3g, or

U = �1û1 
 û1 + �2û2 
 û2 + �3û3 
 û3: (2.13)

5. Finally calculate
Q = FU�1: (2.14)

Notice above that we have introduced the idea of the square-root of a positive-de�nite symmetric
matrix. U =

p
C is the unique positive-de�nite symmetric matrix with the property that U2 = C.

U has the same eigenvectors as C, but the eigenvalues of U are the square-roots of those of C.

2.2 Continuum Kinematics

2.2.1 Deformation

Consider a body occupying a region 
 in three-dimensional space IR3 as shown in Fig. 2.1. Let us
choose this to be the reference con�guration; in other words, we use this con�guration to describe
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q
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n̂

dx
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dA
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y(x)
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da

m̂

y

Ω y(Ω)
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y(q)

y(p)
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Figure 2.1: The deformation y takes the reference con�guration on the left to the deformed con-
�guration on the right.

2

1

0                          1                         2                        3

x  (y  )2 2

x  (y )1 1

Figure 2.2: Example of a homogeneous deformation. The reference con�guration on the left deforms
to the deformed con�guration on the right under the deformation described in Eq. (2.15).



7

x  (y  )2 2

x  (y )1 1

1

0                       1                     2                      3

Figure 2.3: Example of an inhomogeneous deformation. The reference con�guration on the left
deforms to the deformed con�guration on the right under the deformation described in Eq. (2.16).
Notice that under su�cient magni�cation, an inhomogeneous deformation can be approximated
locally by a homogeneous deformation.

the body. Let x = fx1; x2; x3g be a typical point in 
. We call the particle occupying the position x,
the particle x. Now, deform the body. The deformation may be described as a function y : 
! IR3

where y(x) = fy1(x); y2(x); y3(x)g denotes position of the particle x in the deformed con�guration.

Fig. 2.2 shows a simple deformation

y1 = (
1p
2
)x1 �

p
2x2 + 3; y2 = (

1p
2
)x1 +

p
2x2; y3 = x3: (2.15)

We choose the reference con�guration to be an unit cube as shown on the left. Notice that this
deformation is planar because y3 = x3 and we can draw it on a sheet of paper. To completely
understand the deformation, we have placed a grid in the reference con�guration and followed its
deformation. This deformation translates the body to the right, stretches it in the \x2" direction
and then rotates it counter-clockwise by 45o. Notice that in this deformation, each part of the
body has undergone the same distortion; such deformations are known as uniform or homogeneous

deformations.

Fig. 2.3 shows another planar deformation,

y1 = x1 + 0:1 sin(2�x2) + 2; y2 = x2 + 0:1x1; y3 = x3: (2.16)

of the unit cube. Once again, we follow the deformation of a grid. Notice that in this case, the
deformation is not uniform; so we call this an inhomogeneous deformation.

2.2.2 Deformation Gradient

Given any deformation y, the deformation gradient ry is the matrix of partial derivatives; i.e., it
is the matrix with components

(ry)ij = @yi
@xj

i; j = 1; 2; 3: (2.17)

For convenience, we often use F to denote the deformation gradient, i.e., we set F(x) = ry(x).
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For example, in the deformations Eq. (2.15) shown in Fig. 2.2 and Eq. (2.16) shown in Fig. 2.3,
the deformation gradients are easily calculated to be

F(x) =

0
BBBBBB@

1p
2

�p2 0

1p
2

p
2 0

0 0 1

1
CCCCCCA

(2.18)

and

F(x) =

0
B@ 1 0:2� cos(2�x2) 0

0:1 1 0
0 0 1

1
CA (2.19)

respectively. Notice that the deformation gradient is constant in the homogeneous deformation,
but it is not constant in the inhomogeneous deformation. In fact, any homogeneous deformation
can be written as

y = Fx+ c (2.20)

for some constant matrix F and constant vector c. For example, we obtain the deformation Eq.
(2.15) if we take F as in Eq. (2.18) and c = f3; 0; 0g.

The deformation gradient plays a very important role in describing the \local" or \in�nitesimal"
nature of the deformation. Suppose we consider a very small region of the body and magnify it. For
example, let us take a little square and magnify it as shown in Fig. 2.3. Let us once again put a grid
on it and then look at this square after deformation: it looks like a parallelopiped. However, notice
that at this magni�cation, the deformation looks almost homogeneous. Indeed, F(x) describes this
almost homogeneous deformation close to the material point x.

The deformation gradient also gives us information on the deformation of in�nitesimal elements
of length, area and volume. We will now show that in�nitesimal line elements near a material point
x deform according to F(x), surface elements deform according to cof F(x) while volume elements
deform according to detF(x). Thus, the deformation gradient F(x) provides a full characterization
of the deformation of in�nitesimal elements of length, area and volume near a particle x.

Consider an in�nitesimal line element dx at the point p in the reference con�guration as shown
in Fig. 2.1. dx = fdx1; dx2; dx3g is a vector with in�nitesimally small length in some direction.
After deformation, this goes to the element dy. It is possible to show1 that

dy = F(p)dx: (2.21)

For example, consider the deformation Eq. (2.15) shown in Fig. 2.2. Since this is a homogeneous
deformation, the statement above is true not only for an in�nitesimal line element, but also for a
�nite line. Consider the vector v = f1; 1; 0g in the reference con�guration (this is the vector which
goes from the lower left to the upper right corner). According to Eq. (2.21), it goes to the vector

Fv =

0
BBBBBB@

1p
2

�p2 0

1p
2

p
2 0

0 0 1

1
CCCCCCA

0
BBBBB@

1

1

0

1
CCCCCA =

1p
2

0
BBBBB@

�1

3

0

1
CCCCCA (2.22)

1Write down the Taylor expansion of y(x) near the point p and use the de�nition of the deformation gradient.
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As expected, this is the vector that goes from the bottom to top corner in the deformed con�gura-
tion.

Therefore, we can use the deformation gradient to calculate the strain in any direction. We will
now show that the

strain in the direction ê =

�q
ê � (FTFê)

�
� 1: (2.23)

Consider an in�nitesimal line element dx in the direction ê in the reference con�guration. After
deformation, it goes to dy = Fdx according to Eq. (2.21). Therefore,

strain =
�nal length � initial length

initial length

=
jdyj � jdxj

jdxj =
jdyj
jdxj � 1 =

p
dy � dy
jdxj � 1

=

p
(Fdx) � (Fdx)

jdxj � 1 =

 s�
F
dx

jdxj
�
�
�
F
dx

jdxj
� !

� 1 (2.24)

=

�q
(Fê) � (Fê)

�
� 1 =

�q
ê � (FTFê)

�
� 1:

Let us go back to our example Eq. (2.15) shown in Fig. 2.2 and consider the direction v̂ =
f1; 1; 0g=p2 in the reference con�guration which points from the lower left to the upper right
corner. It is easy to use the formula above to calculate the strain to be

p
5=2 � 1. This is easily

veri�ed from the �gure: notice that the length of the diagonal in the reference con�guration is
p
2

while that in the deformed con�guration is
p
5 so that the strain is (

p
5�p2)=p2 = p

5=2� 1.
Now consider a di�erential material volume dV at the material point q in the reference con-

�guration in Fig. 2.1. After deformation, this goes to the di�erential volume dv. It is possible to
show that

dv = (detF(q))dV: (2.25)

Thus, the determinant of the deformation gradient describes the local change in volume. Once again
consider the deformation Eq. (2.15) shown in Fig. 2.2. As before, we may look at �nite rather than
in�nitesimal volumes because this deformation is homogeneous. According to Eq. (2.25) and Eq.
(2.18), the ratio of the deformed to reference volumes is equal to detF = 2.

We are interested in only those deformations where a �nite volume is not compressed to a point
or where a point is not expanded to a �nite volume. Further, we we are interested in only those
deformations where the body does not penetrate itself. Therefore, we will assume that detF > 0
at all points within the body.

Finally consider the di�erential material area dA with unit normal n̂ in the reference con�gu-
ration. After deformation, this goes to the di�erential area da with unit normal m̂ (see Fig. 2.1).
It turns out that

m̂ =
F�T n̂
jF�T n̂j while da = dAj(cof F)n̂j: (2.26)

In fact, there is an easier way of writing these relations. Let us introduce the idea of an \area vector"
for any planar surface. The area vector a of any planar surface is the vector whose magnitude jaj
is equal to the surface area and whose direction a=jaj is the normal. Therefore, (dAn̂) is the area
vector of the in�nitesimal surface element in the reference con�guration while (dam̂) is the area
vector in the deformed con�guration. We can summarize the relations in Eq. (2.26) above as

dam̂ = (cof F)(dAn̂): (2.27)
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Thus, the cofactor of the deformation gradient describes the local change in area. Let us now
examine this for the deformation Eq. (2.15) shown in Fig. 2.2. Consider the plane with normal
n̂ = 1p

2
f1; 1; 0g which goes through the bottom-right and the top-left corners of the reference

con�guration. After deformation, this plane goes to the plane which passes through the left and
right corners in the deformed con�guration. Let us see what Eq. (2.27) gives us.

(cof F)n̂ =

0
BBBBBB@

p
2 � 1p

2
0

p
2 1p

2
0

0 0 2

1
CCCCCCA

0
BBBBBB@

1p
2

1p
2

0

1
CCCCCCA
=

1

2

0
BBBBB@

1

3

0

1
CCCCCA ; (2.28)

so that the ratio of deformed to reference area is j(cof F)n̂j =
p
5p
2
as expected. Further, the normal

to the deformed plane is m̂ = 1p
10
f1; 3; 0g which is easily veri�ed in the �gure.

Let us conclude with one �nal observation. Notice that line segments and normals to planes
deform quite di�erently. In the example above, we picked v and n̂ to be parallel, but Fv and m̂
are not.

2.2.3 Rotation and Stretch

We now show that we can decompose any deformation locally into a stretch or pure distortion
followed by a pure rotation. We will use this decomposition later in our discussion of frame-
indi�erence.

It is very easy to see this decomposition for the the homogeneous deformation Eq. (2.15) shown
in Fig. 2.2. Notice that we can decompose the deformation gradient F given in Eq. (2.18) as follows:

0
BBBBBB@

1p
2

�p2 0

1p
2

p
2 0

0 0 1

1
CCCCCCA
=

0
BBBBBB@

1p
2

� 1p
2

0

1p
2

1p
2

0

0 0 1

1
CCCCCCA

0
BBBBB@

1 0 0

0 2 0

0 0 1

1
CCCCCA : (2.29)

It is clear that the �rst matrix on the right is a rotation (of 45o about the 3-axis) while the second
is positive-de�nite and symmetric . We will call the �rst Q and the second U. U stretches the
reference con�guration in the x2 direction and Q rotates it by 45o in the counter-clockwise manner.
Therefore, this deformation is a stretch or distortion by U followed by a rotation by Q.

In general, we use the polar decomposition theorem (Theorem 2.1) to decompose the de-
formation gradient F(x) into a rotation Q(x) and a positive-de�nite symmetric matrix U(x):
F(x) = Q(x)U(x). Consider an in�nitesimal sphere near the material point x. U(x) stretches this
sphere by the amounts equal to its eigenvalues �i in the direction of its eigenvectors ûi to obtain an
ellipsoid; Q(x) then rotates this to become the �nal deformed ellipsoid. U is called the stretch and
Q is called the rotation associated with the deformation gradient. U(x) describes the \distortion"
in a small region near x while Q(x) describes the \orientation".

2.2.4 Kinematic Compatibility

We now turn to another crucial aspect of deformation. Consider the deformation shown in Fig.
2.4. The bottom part of the body has been sheared one way while the top part has been sheared in
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m̂

y = Fx + c

y = Gx + d

Ω1

2Ω

n̂

Figure 2.4: The kinematic compatibility condition. If the deformation is continuous, then the
deformation gradients on the two sides must satisfy Eq. (2.31). Equivalently, coherent interfaces
require the satisfaction of an invariant plane condition.

another; yet the body remains unbroken. Notice that a straight line in the reference con�guration is
kinked, but unbroken after deformation. This is an example of a deformation which is continuous,
but where the deformation gradient is not. In particular, the deformation gradient jumps across
the interface. Such deformations play an important role in the study of martensites; in fact, they
describe coherent interfaces.

If a deformation is continuous, can the jump in the deformation gradient be arbitrary? Looking
at the Fig. 2.4, it is easy to convince ourself that the answer is no. If the body has to remain
unbroken, then the plane separating the two sides of the body should su�er the same deformation
when viewed from either side. In other words, the two parts must contain an \invariant plane".
Alternately, recall that the deformation of the plane is governed by (cof F)n̂. Thus, if a deformation
is continuous, then this quantity must remain unchanged as we go across the interface. Therefore,
the jump or change in the deformation gradient across the surface can not be arbitrary. Let us now
characterize the restrictions that it has to satisfy.

Suppose the deformation shown in Fig. 2.4 is piecewise homogeneous:

y =

(
Fx+ c x 2 
1

Gx+ d x 2 
2
(2.30)

where F;G are constant matrices, c;d are constant vectors and 
1;
2 are two distinct parts of 
.
Notice that the deformation gradient is F in 
1 and G in 
2. If y is continuous, then it necessary
that F and G satisfy

F�G = a 
 n̂ (2.31)

for some vectors a; n̂. Or in components,

Fij �Gij = ain̂j : (2.32)

Further, it is necessary that the interface between the two regions is a plane with reference normal
n̂. This condition is known variously as the Hadamard jump condition or kinematic compatibility
condition.

We conclude by showing that this is exactly the invariant plane condition. Consider any vector
v lying on the interface. Clearly, v � n̂ = 0. Using the equation above, we see that

Fv�Gv = (a
 n̂)v = a(v � n̂) = 0 or Fv = Gv: (2.33)

Thus, both F and G deform this vector v equally which is exactly the invariant plane condition.
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3 Continuum Theory of Crystalline Solids

In this section, we develop the basic ideas of deformation, symmetry and energy for crystalline
solids. This presentation draws heavily on the ideas of Ericksen [15, 16, 17, 18]. We begin with a
discussion of the lattice and then link it to the continuum using the Cauchy-Born hypothesis.

3.1 Bravais Lattice

A Bravais lattice L(ei; o) is an in�nite set of points in three-dimensional space generated by the
translation of a single point o through three linearly independent lattice vectors fe1; e2; e3g, i.e.,

L(ei; o) =
n
x : x = �iei + o where �1; �2; �3 are integers:

o
: (3.1)

Here we continue to use the summation convention: we sum any repeated indices so that �iei =
�1e1 + �2e2 + �3e3. The lattice vectors fe1; e2; e3g de�ne an \unit cell". See Fig. 3.1 for a few
examples.

Let us introduce some terminology that we will use later. It is conventional to denote a direction
in a lattice by [uvw] where u, v and w are numbers. A comma or a space may or may not be used
to separate them. It denotes the direction given by the vector

d = ue1 + ve2 + we3: (3.2)

Fig. 3.2 shows a few examples on the left. It is conventional to write negative numbers using
an overhead bar. Notice that a direction remains unchanged if we multiply each of u, v and
w with a positive constant, since the magnitude of the vector d is not important. A class of
crystallographically equivalent directions is denoted by huvwi. For example, in a simple cubic lattice
with lattice vectors chosen parallel to the edges, h100i = f[100]; [�100]; [010]; [0�10]; [001]; [00�1]g.

It is conventional to denote a plane with its normal (hkl); once again h, k and l are numbers,
a comma or a space may or may not separate them and a bar denotes a negative. To understand
this notation, it is necessary to introduce \reciprocal vectors". De�ne vectors fe1; e2; e3g such that

ei � ej =
(

0 if i 6= j
1 if i = j

for any i; j = 1; 2; 3: (3.3)

In other words, e1 is chosen to be perpendicular to e2 and e3 and its length is chosen such that
e1 � e1 = 1 and so on. See Fig. 3:3 for two examples. Notice that if the lattice vectors are mutually
perpendicular, the reciprocal vectors are parallel to the lattice vectors. Now, the (hkl) plane is the
plane with normal

n = he1 + ke2 + le3 (3.4)

Fig. 3.2 shows a few examples on the right. Once again the magnitude of the vector n as well as
the sense (+ or �) is not meaningful; therefore, the plane remains unchanged if we multiply each
of h, k and l with a constant. Finally, fhklg denotes a class of equivalent planes. For example,
f110g = f(110); (1�10); (101); (10�1); (011); (01�1)g in a simple cubic lattice.

If each of u, v and w are rational numbers (ratio of integers like 1
2 , but not

p
2), it is possible

to multiply them with the smallest common multiple of the denominators and express each as an
integer. Then, the direction is called a rational direction. These are exactly those directions that
go through lattice points. Similarly a rational plane is one where h, k and l may be expressed as
integers. These are exactly those planes on which it is possible to �nd a net or a two-dimensional
sub-lattice. A note of warning is worth bearing in mind while using this terminology. In practice,
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one can measure directions (or planes) only up to a �nite accuracy and consequently u, v and w
(h, k and l) may be each be approximated by an integer within the accuracy of the measurement.
Therefore, in practice, a rational direction (plane) typically denotes one where u, v and w (h, k and
l) may be reduced to small integers where as an irrational direction (plane) denotes those where
they can not.

3.2 Deformation of Lattices and Symmetry

Consider two Bravais lattices L(ei; o) and L(fi; o) generated by lattice vectors feig and ffig re-
spectively. There is a matrix F with detF 6= 0 such that

fi = Fei: (3.5)

Therefore, we may regard, the lattice L(fi; o) as a deformation of the lattice L(ei; o) through F.
There are some deformations which map a Bravais lattice back to itself. This is a consequence

of the symmetry in a lattice. For example, see the lattice at the top in Fig. 3.1 and consider the
shear which maps feig to ffig. Notice that this shear maps the lattice back to itself. Similarly,
notice that the rotation which maps feig to fgig in the same �gure also maps the lattice back to
itself. In order to understand the set of all deformations that map a lattice back to itself, we need
the following result.

Result 3.1. Two sets of lattice vectors fe1; e2; e3g and ff1; f2; f3g generate the same lattice, i.e.,
L(ei; o) = L(fi; o), if and only if

ei = � j
i fj (3.6)

for some
3� 3 matrix of integers � j

i such that det jj� j
i jj = �1: (3.7)

We have used the summation convention in Eq. (3.6) so that it actually represents three equations

ei = � 1
i f1 + � 2

i f2 + � 3
i f3 i = 1; 2; 3: (3.8)

For example, take feig and ffig shown in the Fig. 3.1. It is easy to verify that they are related
as

f1 = e1; f2 = e1 + e2; f3 = e3: (3.9)

Therefore,

jj� j
i jj =

0
B@ 1 0 0

1 1 0
0 0 1

1
CA : (3.10)

Similarly, feig and fgig in Fig. 3.1a are related through

jj� j
i jj =

0
B@ 0 1 0
�1 0 0
0 0 1

1
CA : (3.11)

Using this result, we see that a matrix H maps the lattice back to itself if and only if

Hei = �
j
i ej (3.12)
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Figure 3.4: Lattice-continuum link using the Cauchy-Born Hypothesis. The lattice vectors deform
according to the deformation gradient.

for some � j
i satisfying Eq. (3.7). Therefore, the set of deformations that map a lattice back into

itself is given by

G(ei) =
n
H :Hei = � j

i ej for some �
j
i satisfying Eq. (3.7)

o
: (3.13)

G(ei) is a group and we call it the symmetry group of the lattice.
This set G(ei) contains both shears and rotations as we saw earlier. However, notice that the

shears cause large distortions of the lattice and are associated with plasticity and slip. On the other
hand, rotations do not distort the lattice (see Section 2.2.3 for a precise meaning of distortion).
In martensitic phase transformations, especially those in shape-memory alloys, plasticity is very
limited. Therefore, we would like to exclude these large shears by de�ning a smaller group.

The point group P is the set of rotations1 that map a lattice back to itself:

P(ei) =
n
R : R is a rotation and Rei = � j

i ej for some �
j
i satisfying Eq. (3.7)

o
: (3.14)

For example, the point group of a simple cubic lattice is the group of 24 rotations that map the
unit cube back to itself. It is easy to verify that the point group depends on the lattice and not
on the particular choice of lattice vectors. It can be shown that there are only 11 distinct point
groups which may be divided into 7 symmetry types.

3.3 Lattice-Continuum Link: The Cauchy-Born Hypothesis

We have so far been been discussing the lattice. Our goal, however, is to obtain a continuum
theory. Therefore, it is time to link the lattice picture to the continuum picture. We do so using

1Usually point groups include rotations and re
ections. However, only the rotations play a role in a continuum
theory which we will soon develop and hence we con�ne ourself to rotations in this de�nition.
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the Cauchy-Born hypothesis [18]. This is explained pictorially in Fig. 3.4. Consider a crystalline
solid. Let it occupy a region 
 in the reference con�guration. Assume that at each point x 2 
,
there is a Bravais lattice with lattice vectors feoi (x)g. Conceptually, one can think of this as picking
a point in the body and then looking at it using some high powered microscope. Now suppose that
the solid undergoes some deformation y(x) perhaps due to the application of some force or due to
a change in temperature. Let F(x) be the deformation gradient. Now look at the lattice at the
same material point x after deformation. It is likely that it is distorted; so let fei(x)g be the lattice
vectors of this deformed lattice. The Cauchy-Born hypothesis says that the lattice vectors deform
according the deformation gradient:

ei(x) = F(x) eoi : (3.15)

In other words, the lattice vectors behave like \material �laments".

3.4 Energy Density in Crystalline Solids

Let us go back to our Bravais lattice L(ei; o). We assume that the Helmholtz free energy density
or simply the stored energy density of this lattice at a temperature � is given by

'̂(ei; �) (3.16)

In other words, we assume that the energy density depends on the lattice vectors and the temper-
ature. We require that the energy density satisfy two properties.

1. Frame-indi�erence. We assume that a rigid rotation of the lattice, or a change of frame, does
not change the free energy density:

'̂(Qei; �) = '̂(ei; �) for all rotations Q: (3.17)

2. Material symmetry. We already know that more than one set of lattice vectors can describe
the same Bravais lattice. We assume that the free energy density does not depend on the
choice of lattice vectors. In other words, two sets of lattice vectors that generate the same
lattice must have the same free energy density:

'̂(� j
i ej ; �) = '̂(ei; �) for all � j

i that satisfy Eq. (3.7) : (3.18)

We now use the Cauchy-Born hypothesis to obtain a continuum energy density. Let us choose
a reference con�guration and subject it to a deformation. We know that lattice vectors deform
according to the deformation gradient. Therefore, we obtain a continuum free energy density
'(F; �) from Eq. (3.16) by setting

'(F; �) = '̂(Feoi ; �): (3.19)

Since we de�ne the ' through '̂, it inherits all important properties of '̂.

1. Frame-indi�erence. It follows from Eq. (3.19) and Eq. (3.17) that

'(QF) = '(F) for all rotations Q: (3.20)

Therefore, a rigid-body rotation or a change in observer does not change the energy.
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2. Material Symmetry. It follows from Eq. (3.19) and Eq. (3.18) that

'(FR; �) = '(F; �) for all rotations R 2 P(eoi ): (3.21)

Before we look at the derivation, let us understand this equation. It simply says that the
continuum free energy should re
ect the fact that the properties of a crystalline solid are
identical in crystallographically equivalent directions. Consider the following experiment.
Take a reference crystal, deform it and look at its energy '(F). Now, rotate the reference
crystal through R and then apply the identical deformation. The corresponding deformation
gradient is FR and the energy density is '(FR). If R is an element of the point group, the
rotated crystal is identical to the reference crystal; so the energy must be the same in both
experiments or '(FR) = '(F).

For future use, we also note that we can combine this with frame-indi�erence Eq. (3.20) to
obtain

'(RTFR; �) = '(F; �) for all rotations R 2 P(eoi ): (3.22)

At times it is convenient to use this, rather than Eq. (3.21) as the statement of material
symmetry.

We now turn to the derivation of Eq. (3.21). This is easy though long, successively using Eq.
(3.19), Eq. (3.16) and Eq. (3.18):

'(F; �) = '̂(F(x)eoi ; �)
= '̂(ei; �)

= '̂(� j
i ej ; �)

= '̂(� j
i Fe

o
j ; �)

= '̂(F(� j
i e

o
j); �)

= '̂(FHeoi ; �)
= '(FH; �)

(3.23)

for all H in G(eoi ). However, we are interested in deformations that are small compared to
lattice shears. Therefore, we con�ne H to the point group P(eoi ), rather than G(eoi ), to obtain
Eq. (3.21). This �nal step is rather subtle and follows from a very nice result due to Pitteri
[19] (also see [15, 20, 21, 22]).

3.5 Multi-Lattice

Consider the lattices shown in Fig. 3.5. Notice that neither can be described as a Bravais lattice.
However, notice that each can be described as a collection of two identical or congruent Bravais
lattices which are \shifted" from one another. In fact, any lattice can be described as a a collection
of a �nite number (�+1) of congruent Bravais lattices. Following Pitteri [23], we call such a lattice
a (� + 1){lattice or multi-lattice1. For simplicity, we will con�ne our discussion here to 2-lattices.
The main ideas should be clear from this and the extension to the general case is conceptually
straight-forward [23].

We describe a 2-lattice using three linearly independent lattice vectors fe1; e2; e3g and one
vector p which we call shift. The lattice vectors describe the Bravais lattice and the shift describes
the o�set or shift between the Bravais lattices:

L(ei;p; o) = L(ei; o)
SL(ei; o+ p)

=
�
x : x = �iei + �p+ o where �1; �2; �3 are integers and � = 0 or 1

	
:

(3.24)

1Some books call a Bravais lattices simply a \lattice" and a multi-lattice a \crystal".
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Two sets of lattices vectors and shift generate the same 2-lattice i.e., L(ei;p; o) = L(ei;q; o) if

ei = � j
i fj and q = �iei + �p (3.25)

where
� j
i satis�es Eq. (3.7); �i are any three integers and

� =

(
�1 if the two Bravais lattices contain like atoms
+1 if the two Bravais lattices contain unlike atoms

:

(3.26)

Given a 2-lattice L(ei;p; o), we de�ne the point group, P(ei;p) as the set of rotations that map
the lattice back to itself:

P(ei;p) =
(
R 2 SO(3) :

 
Rei = � j

i fj
Rp = �iei + �p

!
for some � j

i ; �
i; � satisfying Eq. (3.26)

)
:

(3.27)
The point group of the 2-lattice is smaller than or equal to the point group of the constituent
Bravais lattice; for example, see the lattice at the bottom of Fig. 3.5. The Bravais lattice is a
square lattice which is invariant under 90o rotations; but the 2-lattice is not.

We use the Cauchy-Born hypothesis to link the lattice and the continuum points of view.
Consider a crystalline solid which undergoes a deformation y(x). Suppose the lattice vectors and
shift at the material point x in the reference and deformed con�gurations are feoi ;pog and fei;pg
respectively. Then, the Cauchy-Born hypothesis says that the lattice vectors deform according to
the deformation gradient:

ei(x) = F(x)eoi : (3.28)

However, it does not relate the change in the shifts to the continuum deformation. In other words,
each constituent Bravais lattice deforms according to continuum deformation, but their relative
movement is not related to the continuum deformation.

We assume that the Helmholtz free energy density of multi-lattice depends on the lattice vectors,
shift and temperature and is given by

~'(ei;p; �): (3.29)

In the subsequent sections, we will study a theory in which we will minimize the total energy of
a crystalline body subject to some boundary conditions. However, according to the Cauchy-Born
hypothesis, the shifts are not linked to the continuum deformation. Therefore, the shift adjusts
itself locally in order to minimize the energy for any given deformation and we can minimize the
shifts out of the problem [24]. For any set of lattice vectors feig and any temperature �, let ~p(ei; �)
be a shift that minimizes the energy density ~'. Let

'̂(ei; �) = ~'(ei; ~p(ei; �); �): (3.30)

This is the energy density of the lattice after we have minimized with respect to the shift. Notice
that this is identical to the energy density of the Bravais lattice discussed in Sec 3.4 and we proceed
as before.

In summary, we can ignore the shifts by minimizing them out of the problem. The good
agreement between experiments in shape-memory alloys most of which are multi-lattices and the
theoretical predictions that we will see in the subsequent chapters shows that this is quite sat-
isfactory when we are studying static microstructure using a framework of energy minimization.
However, the shifts can have a profound e�ect in metastable and dynamic problems (see for example
[24, 25, 26]).
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Figure 3.5: Two examples of multi-lattices.

4 Martensitic Phase Transformation

We are interested in developing a continuum theory for materials that undergo the martensitic
phase transformation. In particular, we are interested in understanding the origin and the nature
of the microstructure that is observed in these materials. In this section, we introduce the basic
concepts of the theory. We con�ne ourselves for now to specimens that are single crystals in the
austenite state. We describe di�erent states of this specimen using deformations. The total energy
of a specimen subjected to a deformation y at a temperature � is given by

Z


'(ry; �)dV: (4.1)

Here ' is the stored energy density (or the Helmholtz free energy density). We assume that
it depends on the local distortion in the lattice measured by the deformation gradient and the
temperature following the discussion in Sec. 3.4. Our basic modeling postulate is the following:
the specimen will occupy the state that minimizes this total energy. Therefore, the behavior of the
specimen - including its microstructure - is completely determined by the energy density '. In this
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Figure 4.1: The martensitic transformation in Indium-Thallium takes the cubic austenite lattice
on top to the tetragonal martensite lattice at the bottom.

section, we �nd some of the basic properties of this energy density in terms of some quantities that
can be determined experimentally.

4.1 Martensitic Phase Transformation; Bain or Transformation Matrix

A martensitic phase transformation is a �rst-order, di�usionless, solid to solid phase transformation.
This is what it means. The lattice has one structure at high temperature and a di�erent one at
low temperature. The change of structure is di�usionless: there is no rearrangement of atoms and
one can obtain one structure from a deformation of the other. The change is sudden: the lattice
parameters change discontinuously as a function of temperature. The high temperature phase is
typically called austenite and the low temperature phase is called martensite. See Fig. 4.1 for the
transformation in Indium Thallium (approximately 23 at. % Tl) [27].

Let fea1; ea2; ea3g be the lattice vectors of the austenite lattice and fem1 ; em2 ; em3 g those of the
martensite lattice. Typically, both sets of lattice vectors depend on temperature � as a consequence
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of thermal expansion. However thermal expansion is much smaller than the distortion due to
transformation in the range of temperatures that we are interested in. Therefore, we will neglect it
in this presentation for simplicity. We point out that the presentation can be readily modi�ed to
take thermal expansion into account.

We can describe the transformation from the austenite lattice to the martensite lattice as a
deformation because there is no di�usion. Therefore, we can �nd a matrix U1 such that

emi = U1e
a
i : (4.2)

U1 describes the homogeneous deformation that takes the lattice of the austenite to that of the
martensite. This is called the Bain matrix or the transformation matrix.

Consider for example the transformation in InTl [27] shown in Fig. 4.1. It undergoes a cubic

to tetragonal transformation. InTl is a disordered alloy (which means the Indium and Thallium
atoms are randomly distributed on the lattice), and we can describe it as a Bravais lattice both in
the austenite and the martensite phase. It has a face-centered cubic lattice in the austenite state
while it has a face-centered tetragonal lattice in the martensite state. The lattice vectors of the
austenite and martensite are

ea1 =
1
2f0; ao; aog; em1 = 1

2f0; a; ag;
ea2 =

1
2f0;�ao; aog; em2 = 1

2f0;�a; ag;
ea3 =

1
2fao; 0; aog; em3 = 1

2fc; 0; ag
(4.3)

in an orthonormal basis parallel to the edges of the cubic unit cell. Therefore, it is easy to verify
that the transformation matrix is given by

U1 =

0
B@ � 0 0

0 � 0
0 0 �

1
CA (4.4)

(where � = a=a0 and � = c=ao) with respect to the basis parallel to the edges of the cubic unit cell
(see Fig. 4.1). In InTl, the quantities ao = 4:7445 �A, a = 4:6919 �A, c = 4:8451 �A, so that � = 0:9889
and � = 1:0221. There are many alloys which undergo a cubic to tetragonal transformation. The
transformation matrix is always of the form shown in Eq. (4.4) where �; � depend on the lattice
parameters of the material. We will see some examples later.

Copper-Aluminum-Nickel (approximately 14 wt. % Al and 4 wt. % Ni) [28] undergoes a
cubic to orthorhombic transformation as shown in Fig. 4.2. CuAlNi is an ordered lattice and it is
su�cient to look only at the copper atoms in order to describe the transformation. The lattice
of copper atoms is face-centered cubic in the austenite state. The lattice in the martensite state
is almost body-centered orthorhombic; the atom at the center is slightly displaced away from the
body center. The transformation may be described as follows. Cut a body-centered tetragonal cell
from two adjacent cubic austenite cells and then stretch it unequally along the three edges of this
tetragonal cell to obtain the orthorhombic martensite cell. Therefore, notice the austenite lattice is
stretched unequally along three mutually perpendicular directions: two of these are face-diagonals
of the cubic while the third is an edge. Therefore, the transformation matrix

U1 =

0
BBBBBBBB@

�+ 


2
0

�� 


2

0 � 0

�� 


2
0

�+ 


2

1
CCCCCCCCA

(4.5)
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Figure 4.2: The martensitic transformation in Copper-Aluminum-Nickel takes the cubic austenite
lattice on the left to the orthorhombic martensite lattice on the right.

(where � =
p
2a=ao, � = b=a0 and 
 =

p
2a=ao) in an orthonormal basis parallel to the edges of

the cubic unit cell. In CuAlNi, the quantities ao = 5:836 �A, a = 4:3823 �A, b = 5:3563 �A, c = 4:223
�A, so that � = 1:0619; � = 0:9178; 
 = 1:0231. Notice that in this transformation, two of the three
axes of orthorhombic symmetry are obtained from h110icubic axes. In any cubic to orthorhombic
transformation where this is true, the transformation matrix is of the form shown in Eq. (4.5);
�; �; 
 are obtained from the lattice parameters. We will see some other examples later.

There is another type of cubic to orthorhombic transformation { here all the axes of orthorhom-
bic symmetry are obtained from h100icubic axes. However, I do not know of any material that
undergoes such a transformation and hence we do not consider this case any further. Henceforth,
a cubic to orthorhombic transformation will refer to the type of transformation in CuAlNi.

Before we proceed, there are two important points to keep in mind about the transformation
matrix. First, the transformation matrix describes the overall deformation of the lattice, but not
necessarily every atom in the lattice. Notice that the atom at the center of the martensite unit
cell in CuAlNi shown in Fig. 4.2 does not follow the homogeneous deformation described by the
transformation matrix. In fact, we need to describe both the austenite and the martensite as multi-
lattices (see Sec. 3.5) in order to fully describe the transformation in CuAlNi. The transformation
matrix describes the deformation of the lattice vectors, but not necessarily the shifts. Therefore,
one should be very careful in choosing the lattice vectors of both the austenite and the martensite
lattices in order to get an accurate description of the transformation. The correct choice is the one
de�ned by the \lattice correspondence".

Second, the transformationmatrix obtained through Eq. (4.2) is symmetric in both the examples
above. However, there are materials like NiTi where this is not so [29]. Instead, a matrix T1 which
is not symmetric satis�es

emi = T1e
a
i : (4.6)

In such cases, we slightly modify the de�nition of transformation matrix. We use Procedure 2.2
to decompose T1 = QU1 where Q is a rotation and U1 is positive-de�nite and symmetric. We
call U1 (and not T1) the transformation matrix. Notice that T1 and U1 are related through a
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Figure 4.3: The energy density at various temperatures.

rotation. According to the idea of frame-indi�erence, rotations do not change the state of a lattice,
and hence this modi�cation does not a�ect the development1. Therefore, we will assume in general
that the transformation matrix is symmetric and positive-de�nite.

4.2 Energy Density

The austenite state is stable at high temperatures while the martensite state is stable at low
temperatures. Therefore, the energy density '̂ introduced in Eq. (3.16) has the behavior shown
schematically in Fig. 4.3. The austenite lattice vectors feai gminimizes it at high temperatures while
the martensite lattice vectors femi g minimizes it at low temperatures. Therefore, there must be a
temperature at which both feai g and femi g have equal energy. We will call this the transformation

1It is also possible to proceed without making this modi�cation as in Bhattacharya [30].
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temperature �o. Therefore, we have

'̂(eai (�); �) � '̂(ei; �) � > �o
'̂(eai (�); �) = '̂(emi (�); �) � '̂(ei; �) � = �o
'̂(emi (�); �) � '̂(ei; �) � < �o

(4.7)

for all lattice vectors ei.
We now pass to the continuum theory using the Cauchy-Born hypothesis. Let us choose an

undistorted crystal of austenite at the transformation temperature as our reference con�guration.
Thus the reference lattice is the austenite lattice or eoi = eai . We invoke the Cauchy-Born hypothesis
(see Fig. 3.4) and use the deformation gradient to identify the states of the body. Clearly, given
our choice of reference con�guration, a deformation gradient equal to identity I corresponds to the
austenite state while a deformation gradient equal to the the transformation matrix or Bain matrix
U1 corresponds to the undistorted martensite lattice. Therefore according to Eq. (3.19) and Eq.
(4.7) the continuum energy density satis�es the following:

'(I; �) � '(F; �) � > �o
'(I; �o) = '(U1; �o) � '(F; �o) � = �o
'(U1; �) � '(F; �) � < �o

(4.8)

for all matrices F. This is also shown schematically in Fig. 4.3. Let us now examine the consequences
of frame-indi�erence and material symmetry on these equations.

4.3 Material Symmetry: Variants of Martensite

In the examples of InTl and CuAlNi that we saw above, the austenite lattice has greater symmetry
than the martensite lattice. This is the case in most martensitic transformations and shape-memory
alloys. We assume henceforth that the austenite has strictly greater symmetry than the martensite.
Precisely, we will assume that the point group of the martensite Pm is a subgroup of the point
group of the austenite Pa. This assumption has very important consequences. In particular, it
gives rise to symmetry related variants of martensite.

Let us go back to the example of InTl shown in Fig. 4.1. We chose to elongate the austenite
lattice along one of the three cubic axes to obtain the martensite lattice. Instead, we could have
chosen any of the other two. Then, we would once again obtain a tetragonal lattice; however, the
orientation of this lattice would be di�erent relative to the austenite lattice as shown in Fig. 4.4.
We will call these the variants of martensite. The three variants of martensite in this case have
transformation matrices U1;U2 or U3 shown in Table 4.1.

Let us try to understand it in a more general setting, we can think of the example above as
follows. We rotate the austenite lattice through a rotation R in its point group Pa and then
transform it. This gives us a variant of martensite. Notice that the transformation matrix of this
variant is RTU1R. Doing this for all the rotations R in Pa we obtain all the di�erent variants of
martensite. However, for some rotations R in Pa, it may turn out that RTU1R = U1. Indeed,
this happens if R is also in the point group of the martensite Pm (for example, consider the 90o

rotation about the vertical axis in our example above). In such a case we do not obtain a di�erent
variant. Thus,

the number of martensite variants, N =
the number of rotations in Pa
the number of rotations in Pm : (4.9)

(In the example of the cubic to tetragonal transformation,N = 24=8 = 3.) Further, letU1;U2; : : : ;UN

be the distinct matrices of the form RTU1R. These are the transformation matrices of the variants
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Figure 4.4: The three variants of martensite in a cubic to tetragonal transformation.

Table 4.1: Cubic to Tetragonal Transformation
Number of martensite variants, N = 3

U1 =

0
B@ � 0 0

0 � 0
0 0 �

1
CA U2 =

0
B@ � 0 0

0 � 0
0 0 �

1
CA U3 =

0
B@ � 0 0

0 � 0
0 0 �

1
CA

In-23at.%Tl � = 0:9889; � = 1:0221 [27]
Ni-36at%Al � = 0:9392; � = 1:1302 [31]
Fe-24%Pt � = 1:0868; � = 0:8503 [32]
Fe-31at.%Ni-0.3at.%C � = 1:1241; � = 0:8059 [33]

of martensite. The number of variants, the transformation strains and examples of materials for
some common transformations are shown in Tables 4.1 to 4.5.

Recall from material symmetry as described in Eq. (3.22) that

'(RTU1R; �) = '(U1; �): (4.10)

Therefore, it follows from the de�nitions above that

'(U1; �) = '(U2; �) = : : : = '(UN ; �): (4.11)

In other words, since all these variants are related by symmetry, they must all have the same energy!
This is shown schematically in Fig. 4.3.

We now brie
y discuss the reasons for our assumption that the point group of the martensite
is a subgroup of the point group of the austenite. A reader can choose to ignore this discussion
on the �rst reading and proceed to Sec. 4.4. This assumption along with the result of Pitteri [19]
implies that there is one and only one variant of austenite if the transformation strain is not too
large. This unique variant of austenite, in turn, allows for the possibility of the shape-memory
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Table 4.2: Tetragonal to Orthorhombic Transformation
Number of martensite variants, N = 2

U1 =

0
B@ � 0 0

0 � 0
0 0 


1
CA U2 =

0
B@ � 0 0

0 � 0
0 0 


1
CA

YBa2Cu3O7�� � = 0:9898; � = 1:0068 
 = 0:9887 [34]

Table 4.3: Cubic to Orthorhombic Transformation
Number of martensite variants, N = 6

U1 =

0
BBBBBBBB@

�+ 


2
0

�� 

2

0 � 0

�� 

2

0
�+ 


2

1
CCCCCCCCA
U2 =

0
BBBBBBBB@

� + 


2
0


 � �

2

0 � 0


 � �

2
0

� + 


2

1
CCCCCCCCA
U3 =

0
BBBBBBBB@

�+ 


2

� � 

2

0

�� 


2

� + 


2
0

0 0 �

1
CCCCCCCCA

U4 =

0
BBBBBBBB@

�+ 


2


 � �

2
0


 � �
2

�+ 


2
0

0 0 �

1
CCCCCCCCA
U5 =

0
BBBBBBBB@

� 0 0

0
�+ 


2

� � 

2

0
�� 


2

� + 


2

1
CCCCCCCCA
U6 =

0
BBBBBBBB@

� 0 0

0
�+ 


2


 � �

2

0

 � �
2

�+ 


2

1
CCCCCCCCA

Cu-14.2wt%Al-4.3wt.%Ni � = 1:0619; � = 0:9278 
 = 1:0230 [28]
Au-47.5%Cd � = 1:0138; � = 0:9491 
 = 1:0350 [35; 36]

Table 4.4: Cubic to Monoclinic-I Transformation
Number of martensite variants, N = 12

U1 =

0
B@ � � �

� � �
� � �

1
CA U2 =

0
B@ � � ��

� � ��
�� �� �

1
CA U3 =

0
B@ � �� ��
�� � �
�� � �

1
CA U4 =

0
B@ � �� �

�� � ��
� �� �

1
CA

U5 =

0
B@ � � �

� � �

� � �

1
CA U6 =

0
B@ � �� �
�� � ��
� �� �

1
CA U7 =

0
B@ � �� ��
�� � �

�� � �

1
CA U8 =

0
B@ � � ��

� � ��
�� �� �

1
CA

U9 =

0
B@ � � �

� � �

� � �

1
CA U10 =

0
B@ � �� ��
�� � �

�� � �

1
CA U11 =

0
B@ � �� �
�� � ��
� �� �

1
CA U12 =

0
B@ � � ��

� � ��
�� �� �

1
CA

Ni-50.6at.%Ti � = 1:0243; � = 0:9563 � = 0:058 � = 0:0427 [29]
Note: There are two types of cubic to monoclinic transformations; in monoclinic-I, the axis of
monoclinic symmetry corresponds to a h110icubic direction.
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Table 4.5: Cubic to Monoclinic-II Transformation
Number of martensite variants, N = 12

U1 =

0
B@ � � 0

� � 0
0 0 


1
CA U2 =

0
B@ � �� 0
�� � 0
0 0 


1
CA U3 =

0
B@ � � 0
� � 0
0 0 


1
CA U4 =

0
B@ � �� 0
�� � 0
0 0 


1
CA

U5 =

0
B@ � 0 �

0 
 0
� 0 �

1
CA U6 =

0
B@ � 0 ��

0 
 0
�� 0 �

1
CA U7 =

0
B@ � 0 �

0 
 0
� 0 �

1
CA U8 =

0
B@ � 0 ��

0 
 0
�� 0 �

1
CA

U9 =

0
B@ 
 0 0

0 � �
0 � �

1
CA U10 =

0
B@ 
 0 0

0 � ��
0 �� �

1
CA U11 =

0
B@ 
 0 0

0 � �
0 � �

1
CA U12 =

0
B@ 
 0 0

0 � ��
0 �� �

1
CA

Cu-15at.%Zn-17at.%Al � = 1:0101; � = 1:0866 
 = 0:9093 � = 0:0249 [37]
Note: There are two types of cubic to monoclinic transformations; in monoclinic-II, the axis of
monoclinic symmetry corresponds to a h100icubic direction.

e�ect as we will see in Sec. 9. On the other hand, a failure of this assumption leads to an an in�nite
number of variants of both austenite and martensite. This is easily seen in the face-centered cubic
to body-centered cubic transformation in say pure Iron. We obtain such a transformation if we
set a

c
=
p
2 in the cubic to tetragonal transformation in Fig. 4.1. Let us start from an fcc lattice

and transform to a bcc lattice; as discussed earlier, we can do so in three equivalent ways. Let us
choose one. We can transform back to an fcc lattice by elongating an edge of the bcc unit cell {
however, we �nd that there are three equivalent ways of doing so. One of the three ways brings
us back to the fcc lattice that we started from; but the other two do not bring us back, instead
they take us to other fcc lattices. But each of these in turn have three equivalent bcc lattices and
so on. We thus �nd that there are an in�nite number of symmetry-related fcc and bcc lattices or
an in�nite number of fcc and an in�nite number of bcc variants. This has serious consequences as
a sequence of forward and reverse transformation can lead to strains as we go from one variant of
austenite to another. Indeed, fcc twins are observed in some ferrous alloys that undergo a fcc to
hcp transformation [38]; these twins reveal the fact that there are more than one variants of the
fcc austenite. This is in fact one of the di�culties in making a good ferrous shape-memory alloy.
Further, a theory based on energy minimization is quite unsatisfactory in a situation when one has
an in�nite number of variants [39].

4.4 Frame Indi�erence: Energy Wells

Consider a crystal in the austenite state and rotate it. It continues to remain in the austenite state.
In other words, a rigid rotation does not change the state of the crystal. Therefore, the austenite
corresponds not only to the identity matrix I, but to all rotation matrices Q. Similarly, the �rst
variant of martensite corresponds to all matrices of the form QU1 where Q is a rotation and so on.
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Figure 4.5: The energy wells. Consider the plane of the paper to be the space of all matrices.
The circles schematically represent pre-multiplication with all rotations. The dashed circle is the
austenite well and the rest are the martensite wells.

Therefore, let us de�ne

A = fF : F = Q for some rotation Qg ;
M1 = fF : F = QU1 for some rotation Qg ;
M2 = fF : F = QU2 for some rotation Qg ;

...
MN = fF : F = QUN for some rotation Qg :

(4.12)

The set A consists of all matrices that correspond to the austenite and we call it the austenite

well. This is shown schematically in Fig. 4.5 as a circle. Similarly, MI consists of all matrices that
correspond to the Ith variant of martensite. We call it the Ith martensite well. Finally, let M be
the collection of all martensite wells:

M =M1

[
M2

[
: : :
[
MN (4.13)

These are also shown in Fig. 4.5.

Since a rigid rotation does not change the state of a crystal, it does not change the energy. This
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Figure 4.6: The di�erence between rotations that are considered in frame-indi�erence and material
symmetry.

is the idea of frame-indi�erence as described in Eq. (3.20). Therefore,

'(QI; �) = '(I; �)
'(QU1; �) = '(U1; �)

...
'(QUN ; �) = '(UN ; �)

(4.14)

for all rotations Q. In other words, all matrices in a given well have the same energy.
Finally, it is worth clarifying one important point. Both material symmetry and frame-indi�erence

involve rotations. However, the way they act is very di�erent. This is shown in Fig. 4.6. Let U be
a stretch in the vertical direction and Q = R be a clockwise rotation of 90o. Notice the di�erence
between QU and RTUR. In material symmetry, the rotation acts in the reference con�guration
and in frame-indi�erence, the rotation acts in the deformed con�guration. Therefore, it is not
possible to rigidly rotate one variant to obtain another. In other words, it is not possible to �nd a
rotation Q such that QU1 = U2. This would violate the uniqueness aspect of the polar decompo-
sition theorem. Therefore, the energy wells de�ned in Eq. (4.12) are indeed disjoint, i.e. they do
not intersect each other.

4.5 Summary of the Energy Density

Let us now put all of this together. We use the lattice correspondence and the lattice parameters to
�nd the transformation matrix U1. Using the polar decomposition theorem if necessary, we ensure
that this matrix is symmetric and positive-de�nite. We then �nd the transformation strains of the
di�erent variants of martensite as the distinct matrices U1;U2; : : :UN of the form RTU1R where
R is a rotation in the point group of the austenite Pa. The number of variants N depends on
the change in symmetry and is given by Eq. (4.9). It important to emphasize that for any given
material, the number of variants as well as the transformation is completely determined by the
lattice structures of the austenite and the martensite and can be determined experimentally.

Having determined these, we can say the following about the energy. According to material
symmetry, Eq. (4.10), all the variants have the same energy. According to frame-indi�erence the
austenite and the variants of martensite are described by wells, Eq. (4.12). Putting these together
with Eq. (4.8), we can say the following about the behavior of the energy density. The energy
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density ' is minimized on the austenite well A at high temperatures, it is minimized on the
martensite wells M at low temperatures and on both the austenite and the martensite wells M at
the transformation temperature �o:

'(G; �) � '(F; �) for all G 2 A and for all F � > �o
'(G; �) � '(F; �) for all G 2 ASM and for all F � = �o
'(G; �) � '(F; �) for all G 2 M and for all F � < �o:

(4.15)

Therefore, if we are looking for energy minimizing con�gurations of our specimen, we should look
for deformations y where the deformation gradient ry belong to the relevant energy wells.

4.6 Multiple Transformations

In certain compositions, NiTi transforms from the cubic austenite to a rhombohedral \R-phase"
before transforming to the martensite. In such a transformation, we will use the austenite state
as the reference con�guration for both transformations [30]. Thus, we have two transformation
matrices, UR

I which describes the deformation from the austenite to the R-phase and Um
I which

describes the deformation from the austenite to the martensite. We calculate the number of variants
of the R-phase using Eq. (4.9) with the point group of the austenite and the point group of the
R-phase { this gives us 24=6 = 4 variants. We calculate the number of variants of the martensite
using Eq. (4.9) with the point group of the austenite and the point group of the martensite { this
gives us 24=2 = 12 variants. We just use the relevant wells depending on the temperature of our
interest. The alternative approach of treating these two transformations separately requires changes
of reference con�guration; this is rather laborious and can easily lead to incorrect conclusions
concerning the symmetry.

5 Twinning in Martensite

In this section, we study a very important energy minimizing deformation { twins in the marten-
site. The purpose is two-fold. First, it gives a glimpse of the richness of the energy minimizing
deformations in these martensitic materials. Second, it shows that the possible twinning modes in
the martensite are determined as a consequence of the energy well structure. In other words, in
this theory, one does not need to know the twinning modes a priori; instead, they are obtained as
a result.

5.1 Deformation Involving Two Variants

Let us begin by trying to �nd a deformation which involves two wells, say those corresponding
to variants I and J of the martensite. In other words, we are looking for a deformation y of the
type shown in Fig. 5.1a: the deformation gradient is in the Ith martensite well MI in one part of
the body 
1 and in the Jth martensite well MJ in the other part of the body 
2. Recalling the
structure of the energy wells from Eq. (4.12), we seek a deformation y such that

ry =

8><
>:
Q1UI in 
1

Q2UJ in 
2

for some rotations Q1;Q2. (5.1)

Remark 5.1. Notice that we have taken the rotations Q1 and Q2 to be constant. It appears
that we would obtain a more general deformation involving these two variants if we assume that
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n̂

y = Q  U1 I  y = Q  U2 J

Martensite
Variant  I

Martensite
Variant  J

 Q  U1 I

 Q  U2 J

UI UJ

(a) (b)

Figure 5.1: (a) A deformation with two variants or a twin. (b) Schematic representation of a twin.

they are functions of x. However, this is not possible and the constant rotation is the most general
situation. To understand this, consider a smooth deformation y with ry(x) = Q(x), or

Qij =
@yi
@xj

: (5.2)

Therefore, the equality of second derivatives requires

@Qij

@xk
=
@Qik

@xj
: (5.3)

It is easy to show appealing to the fact that Q(x) is a rotation that the only possibility consistent
with this equation is Q = constant. This argument can also be generalized to non-smooth defor-
mations [40]. In some sense, this is equivalent to the statement that bodies can not bend with zero
distortion. Thus, the deformation shown in Eq. (5.1) is the most general deformation involving two
wells.

Clearly, the deformation gradient su�ers a jump in this deformation and we have to satisfy the
kinematic compatibility condition described in Eq. (2.31), or

Q1UI �Q2UJ = b
 n̂ (5.4)

for some vectors b and n̂. Furthermore, the interface between the two regions is necessarily a plane
with normal n̂ in the reference con�guration.

Fig. 5.1b is a schematic representation of this deformation. We join two matrices with a straight
line if they can form an interface between them. Recall from Fig. 4.5 that we represent the energy
wells as circles. Q1UI and Q2UJ are the matrices on the Ith and Jth martensite wells respectively.
Since they satisfy the condition Eq. (5.4), they can form an interface; we show this by joining them
with a straight line.

Premultiplying this equation by QT
2 and setting Q = QT

2Q1 and a = QT
2 b, we can rewrite Eq.

(5.4) as
QUI �UJ = a
 n̂: (5.5)

We call this the twinning equation anticipating the interpretation that follows.
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5.2 Interpretation as a Twin

A twin is a visible coherent interface in a crystal which satis�es the following1:

1. The lattice on one side can be obtained by a simple shear of the lattice on the other.

2. The lattice on one side can also be obtained by a rotation of the lattice on the other.

We now show that the deformation described in Sec. 5.1 can be interpreted as a transformation
twin involving variants I and J . Let ffig, fgig be the lattice vectors on the two sides of the
interface. According to the Cauchy-Born hypothesis,

fi = QUIe
a
i and gi = UJe

a
i (5.6)

where feai g are the lattice vectors of the reference austenite lattice. According to Eq. (5.5),

QUI = (UJ + a 
 n̂) = (I+ a
 (U�1J n̂))UJ : (5.7)

Operating this on eai and using Eq. (5.6), we obtain

fi = (I+ a
 (U�1J n̂))gi (5.8)

But (I + a 
 (U�1J n̂)) is a simple shear. This is seen by taking the determinant of Eq. (5.7) and
using a result from matrix algebra,

detUI = det(QUI) = det(I+ a 
 (U�1J n̂)) detUJ = (1 + a � (U�1J n̂)) detUJ : (5.9)

However, detUI = detUJ and it follows that a � (U�1J n̂) = 0. Therefore, (I + a 
 (U�1J n̂)) is a
simple shear and Eq. (5.8) says that the lattice vectors on one side can be obtained by a simple
shear of the other side, satisfying the �rst requirement.

To see the second, recall that UI is related to UJ by some rotation R in the point group of the
austenite Pa:

UI = RTUJR where R is a rotation that satis�es Reai = �
j
ie

a
j (5.10)

for some � j
i consistent with Eq. (3.7). Therefore,

fi = QUIe
a
i = QRTUJRe

a
i = QRTUJ�

j
ie

a
j = �jiQR

TUJe
a
j = �jiQ

0gj (5.11)

where Q0 = QRT is a rotation. Therefore, the lattice vectors ffig and fQ0gig describe the same
lattice according to Theorem 3.1. In other words, a rotation of fgig gives lattice vectors which are
crystallographically equivalent to ffig. Thus, we satisfy the second requirement and the deformation
in Sec. 5.1 describes a twin.

The twinning elements { the twinning shear s, the direction of shear �1 and the shearing plane
(relative to the lattice on one side) K1 { are given by

s = jaj jU�1J n̂j; �1 =
a

jaj ; K1 =
U�1J n̂

jU�1J n̂j : (5.12)

1There are many de�nitions of a twin [41, 42, 43, 44]; we have chosen one which is most convenient for our purpose.
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5.3 Solution of the Twinning Equation and Classi�cation

We now seek to solve the twinning equation. Therefore, given UI and UJ , we examine if we can
�nd Q; a; n̂ that satisfy Eq. (5.5). This is accomplished through the following result of Ball and
James [11] (also see Khachaturyan [45]).

Result 5.2. Given matrices F and G with positive determinants, the following procedure tells us
if there is a rotation Q and vectors a 6= 0 and n̂ such that

QF�G = a 
 n̂: (5.13)

1. Calculate the matrix C = G�TFTFG�1.

2. If C = I, the identity matrix, then there is no solution to Eq. (5.13).

3. If C 6= I, calculate the eigenvalues �1; �2; �3 of the matrix C. Automatically �i > 0. Number
the eigenvalues so that �1 � �2 � �3.

4. Eq. (5.13) has a solution if and only if the eigenvalues satisfy

�1 � 1 ; �2 = 1 ; �3 � 1: (5.14)

5. If the condition in Eq. (5.14) holds, then there are exactly two solutions given by:

a = �

0
@
s
�3(1� �1)
�3 � �1

ê1 + �

s
�1(�3 � 1)

�3 � �1
ê3

1
A

n̂ =

p
�3 �

p
�1

�
p
�3 � �1

�
�
p
1� �1G

T ê1 + �
p
�3 � 1GT ê3

� (5.15)

where � = �1, � 6= 0 is chosen to make jn̂j = 1 and êi are the eigenvectors of C corresponding
to the eigenvalues �i, i = 1; 2; 3. Choosing � = 1 gives us one solution while � = �1 gives us
the other. In both solutions, we obtain Q by substituting a; n̂ back into Eq. (5.13).

We will not prove this result here. However, we can understand it as follows. The matrix C
describes the deformation of one side relative to the other and its eigenvalues f�ig describe the
stretches of one side relative to the other. If the two sides are coherent, we need to �nd a plane
which is relatively unstretched. This is possible if and only if (a) one of the three stretches is equal
to one and (b) the other two stretches straddle one. This is exactly the condition in Eq. (5.14).

To check if we can form a twin with variants I and J , we simply substitute F = UI ;G = UJ

in the procedure above. Therefore, going through all pairs of variants, we can �nd all the possible
twinning modes in a material. In fact, Pitteri and Zanzotto [46] have provided a full classi�cation
of deformation twins that arise from martensitic transformations in Bravais lattices.

Notice from the result above, that solutions always come in pairs: given a pair of variants, either
they can not form a twin, or they can form two di�erent kinds of twins. In other words, for every
twinning system, there is a reciprocal twinning system which connects the same set of variants.

The result above is comprehensive. However, it often requires quite a lot of calculations. There
is in fact another result which is very easy to use, but works only in some special cases. Recall,
that the variants of martensite are related through a rotation R in the point group of the austenite
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Pa: UI = RTUJR. If this rotation R is a 180o rotation, then Eq. (5.5) has solutions and they can
be obtained very easily through the following result [47, 48, 49, 50].

Result 5.3. Suppose R is a 180o rotation about some axis ê and the matrices F and G satisfy

1: F = QGR for some rotation Q, or equivalently, FTF = RTGTGR

2: FTF 6= GTG
(5.16)

Then, there are two solutions to Eq. (5.13) and they are

1: a = 2

 
G�T ê
jG�T êj2 �Gê

!
; n̂ = ê

2: a = �Gê ; n̂ =
2

�

 
ê� GTGê

jGêj2
! (5.17)

where � 6= 0 is chosen to make jn̂j = 1. In both solutions, we obtain Q by substituting a; n̂ back
into Eq. (5.13).

It is easy to verify Result 5.3 using the representation R = �I + 2ê
 ê for a 180o rotation.

Note that this result is not comprehensive. The failure of condition Eq. (5.16) does not rule out
a solution. Therefore, if this condition is not satis�ed, we have to use Result 5.2 to check if there
are any solutions.

This result tells us that a lost element of two-fold symmetry { a 180o rotation which is in Pa but
not in Pm { gives rise to a twinning system in the martensite. This is often called Mallard's law.
Most twins in the martensite are of this kind, but there are exceptions as pointed out by Simha
[51] as well as Pitteri and Zanzotto [46].

This Result 5.3 allows us to classify the twins. Notice in the �rst solution, Eq. (5.17)1, the
twinning plane is a plane of symmetry in the austenite. Therefore, this plane is rational and this
solution describes a Type I twin. Next, notice that the shearing direction in the second solution,
Eq. (5.17)2 is a direction of symmetry in the austenite and hence rational. Therefore, this solution
describes a Type II twin. Finally, there are occasions in which there are two 180o rotations that
satisfy Eq. (5.16); call them R1 and R2. Thus, it appears that Result 5.3 gives us four solutions
to the twinning equation: two using R1 and two using R2. However, Result 5.2 tells us that there
can be at most two solutions. It turns out that the Type I solution Eq. (5.17)1 using R1 coincides
with the Type II solution Eq. (5.17)2 using R2 and vice-versa. Consequently, there are only two
solutions. However, each solution can be described as both a Type I and a Type II twin and both
the twinning plane and shearing direction are rational. These are called Compound twins.

5.4 Twins in a Cubic to Tetragonal Transformation

Let us now �nd all the possible twins in a cubic to tetragonal transformation. We begin with
variants 1 and 2. Let R be a 180o rotation about ê = 1p

2
f1; 1; 0g. It is easy to verify that

RTU1R = U2. Therefore, these matrices satisfy Eq. (5.16) for F = U2;G = U1 and these two
variants are related by a twin according to Result 5.3. The solutions to the twinning equation
are given by Eq. (5.17). Substituting ê;G in this equation, a little calculation shows that the two
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solutions are

1: a =

p
2(�2 � �2)
�2 + �2

f��; �; 0g n̂ =
1p
2
f1; 1; 0g

2: a =

p
2(�2 � �2)
�2 + �2

f��;��; 0g n̂ =
1p
2
f1;�1; 0g

(5.18)

in the cubic basis. It turns out that these two variants also satisfy Eq. (5.16) for the 180o rotation
about the axis 1p

2
f1;�1; 0g. This rotation also gives us the same solutions. Therefore, we conclude

that these twins are compound. Similarly, if we pick variants 1 and 3, we �nd that they satisfy Eq.
(5.16) with 180o rotations about 1p

2
f1; 0;�1g. Therefore they can also form twins and the solution

can obtained by switching the 2 and the 3 components in Eq. (5.18). Finally, variants 2 and 3 are
also twin-related and the solution is obtained by switching the 1 and the 3 components in equation
Eq. (5.18).

Thus each pair of variants in a cubic to tetragonal transformation can form a twin. Further, all
the twins are compound and the twin planes are f110gcubic.

5.5 Twins in a Cubic to Orthorhombic Transformation

We now �nd all the possible twins in a cubic to orthorhombic transformation. Let us begin with
variants 1 and 2. Let R be a 180o rotation about ê = f1; 0; 0g. It is easy to verify that RTU1R =
U2. So these matrices satisfy the Eq. (5.16) for F = U2;G = U1. Therefore, these two variants
are related by a twin according to Result 5.3 and we can �nd the solution to the twinning equation
using Eq. (5.17). Substituting ê;G in this equation, a little calculation shows that the two solutions
are

1: a =

2 � �2


2 + �2
f(�� 
); 0; (�+ 
)g n̂ = f1; 0; 0g

2: a = � 
2 � �2

2 + �2

f(�+ 
); 0; (�� 
)g n̂ = f0; 0; 1g
(5.19)

in the cubic basis. It turns out that these two variants also satisfy Eq. (5.16) for the 180o rotation
about the axis f0; 0; 1g. This rotation also gives us the same solutions. Therefore, these twins are
compound.

Now consider variants 1 and 3. It is easy to verify that RTU1R = U3 where R is a 180o

rotation about ê = 1p
2
f1; 0; 1g. Therefore, these matrices satisfy Eq. (5.16) for F = U3;G = U1

and we can �nd the solution to the twinning equation using Eq. (5.17). The algebra now gets quite
involved and gives long formulas. Rather than displaying these, we give the solutions for the special
case of CuAlNi (whose parameters �; �; 
 are given in Table 4.3):

1: a = f�0:187; 0:164;�0:052g n̂ =
1p
2
f1; 1; 0g

2: a = f0:192; 0:169; 0:004g n̂ = f�0:688; 0:688;�0:228g
(5.20)

in the cubic basis. There is no other 180o rotations that satisfy Eq. (5.16) for this pair of variants.
Therefore we conclude that the twins described by Eq. (5.20)1 are Type I while those described by
Eq. (5.20)2 are Type II.

We can similarly go through all possible pairs of variants and conclude the following. Each pair
of variants is twin-related. If the pair of variants share a common \c-axis" (the pairs 1 & 2, 3 &
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 Q  U1 I  Q  U1 I  Q  U1 I Q  U2 J  Q  U2 J

n̂

Figure 5.2: Parallel twins that separate two alternating variants.

4 and 5 & 6 satisfy this condition), then they form compound twins with a f100gcubic twin plane.
If on the other hand, the pair of variants do not share a common \c-axis", then they form Type I
twins with a f110gcubic twin plane and the reciprocal Type II twin. Thus there are three distinct
twinning modes in a cubic to orthorhombic transformation.

5.6 Parallel Twins

The calculations above study a single twin interface separating two homogeneous regions. We
now look at a few deformations which involve more than one twin interfaces. First, consider the
con�guration shown in Fig. 5.2. Here, we have many parallel twin planes separating alternating
regions of two variants. Notice that the compatibility conditions is the same (up to a � sign) as
Eq. (5.5). Thus, if Eq. (5.5) has a solution, i.e., if it is possible to construct one twin interface, then
it is immediately possible to construct alternating twins like in Fig. 5.2. In fact, such structures
are very commonly observed. We will return to them in Sec. 6.3.

5.7 Zig-zag Twins

Second, let us examine the deformation shown in Fig. 5.3. Here, we also alternate between two
variants; but unlike Fig. 5.2, we alternately use the two di�erent twinning systems that connect
the variants (See Ball and James [21] and Bhattacharya [52] for further details). As far as I know,
such a structure has not been observed.

5.8 Crossing Twins

It is not uncommon to observe structures like the one shown in Fig. 5.4a { see for example Chu [53]
and Nishida et al. [54]. It appears as though one twin laminate is crossing another. The crucial
parts of this structure are the four-fold corners. At any such corner, four interfaces separating four
variants meet along a line which goes into the plane of the paper. Let us now study such a four-fold
corner.

Apart from the nice result we will obtain, we will use this example to emphasize a very important
point about kinematic compatibility. We will �nd that just satisfying the compatibility condition
or the twinning equation on the four interfaces is not su�cient. We need an additional condition
in order to prevent a dislocation at the corner. Unfortunately, this condition is often forgotten and
this leads to incorrect results.
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Figure 5.3: (a) Zig-zag twins that separate two alternating variants. (b) Schematic representation.
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Figure 5.4: (a) A crossing twin structure that involves four variants. (b) A general deformation
where four variants meet at a point. (c) Schematic representation. (d) The geometry predicted by
Result 5.4.
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Let us begin with a very general four-fold deformation involving four variants shown in Fig.
5.4b. Notice that we do not make any assumptions about the geometry of the interfaces. Kinematic
compatibility requires that the gradients satisfy the following conditions.

1: Q1UJ �UI = b1 
 n̂1
2: Q1Q2UK �Q1UJ = b2 
 n̂2
3: Q1Q2Q3UL �Q1Q2UK = b3 
 n̂3
4: UI �Q1Q2Q3UL = b4 
 n̂4
5: n̂1; n̂2; n̂3 and n̂4 lie on a plane

(5.21)

for some rotations Q1;Q2;Q3 and vectors b1; : : :b4; n̂1 : : : n̂4. These relations are shown schemat-
ically in Fig. 5.4c. To understand these, let us introduce the rotation Q4 = (Q1Q2Q3)

T . After
some manipulations { premultiplying Eq. (5.21)2 with QT

1 and setting a2 = QT
1 b2 etc. { we can

rewrite Eq. (5.21) as follows:

1: Q1UJ �UI = a1 
 n̂1
2: Q2UK �UJ = a2 
 n̂2
3: Q3UL �UK = a3 
 n̂3
4: Q4UI �UL = a4 
 n̂4
5: Q1Q2Q3Q4 = I

6: n̂1; n̂2; n̂3 and n̂4 lie on a plane

(5.22)

for some rotations Q1;Q2;Q3;Q4 and vectors a1; a2; a3; a4; n̂1; n̂2; n̂3; n̂4. The conditions 1� 4 are
the twinning equations for each adjacent pair of variants. However, just satisfying these is not
su�cient. We must ensure that the rotations all add up to identity as required in condition 5. This
condition is essential to prevent a dislocation along the line of intersection. Finally, condition 6
assures us that all four planes meet along a line. The following result due to Bhattacharya [55]
gives us some conditions under which we can have solutions to Eq. (5.22).

Result 5.4. Suppose R1 is a 180o rotation about ê1 and R2 is a 180o rotation about ê2 where
ê1 � ê2 = 0. Let ê3 be perpendicular to both ê1 and ê2. Suppose variants I; J;K; L satisfy the
following conditions

1: All the four variants are di�erent, i.e., I 6= J; J 6= K etc.
2: UJ = RT

1UIR1; UK = RT
2UJR2; UL = RT

2UIR2

3: ê3 �U2
I ê2 6= 0:

(5.23)

Then, there are two solutions to Eq. (5.22). In either solution, the geometry is necessarily as shown
in Fig. 5.4d. We alternate between a Type I and Type II twin interface1. Further, the two Type
I interfaces are the same plane while the Type II interfaces are obtained by a re
ection across it.
Finally, if condition Eq. (5.23) holds, it is possible to have a \I-K-J-L" and a \I-J-L-K" structure.

Thus, even if we start with a general geometry shown in Fig. 5.4b, our result forces the geometry
shown in Fig. 5.4d.

In a cubic to tetragonal transformation, we can not have such an interface. Notice from condi-
tion Eq. (5.23)1 that we need four distinct variants and in this case there are only three variants.
In a cubic to orthorhombic transformation as in CuAlNi, we can have a Type II twin crossing a
Compound twin or a Compound twin crossing a Type I twin. These agree very well with observa-
tions [53]. In a cubic to monoclinic transformation as in NiTi, we can have a variety of crossings
[55] which agree with observations [54].

1Of course, we can replace either with a compound twin interface!
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Figure 6.1: The energy density in the simple one-dimensional example.

6 Origin of Microstructure

In the previous section, we saw that deformation twins can be obtained as energy minimizing de-
formations. However, it is unusual to see isolated twin interfaces in martensitic materials. Instead,
a typical section of a martensitic material shows a complex pattern with many interfaces. Further-
more, the length-scale of these patterns is much smaller than that of the specimen. We saw that
we can obtain deformations like those in Fig. 5.2, where the twin interfaces can be very closely
spaced, as energy minimizing deformations. However, that does not answer the question why is

a typical picture in martensite a complex pattern at a �ne length-scale { why does the martensite

form microstructure?

We argue in this section that this �ne-scale microstructure is a consequence of the multi-well
structure of the energy density '. Heuristically, the idea is the following. Consider a single crystal
subjected to a boundary condition. Energetically, it prefers to be at or close to the bottom of
the energy wells. So if the boundary condition corresponds to one of the energy wells, then the
material can easily accommodate it. If on the other hand, the applied boundary condition does
not correspond to any of the energy wells, but to the average value of a few, then the material
can satisfy both requirements by making a mixture of the di�erent wells. However, the mixture
can not be arbitrary because of kinematic compatibility or the requirement that the deformation
be coherent. We will soon see that making very �ne mixtures greatly enhances the ability of
the material to satisfy the kinematic compatibility restrictions. Therefore, a typical picture of a
martensitic material contains microstructure, or a complex pattern of di�erent variants at a very
�ne scale.

In this section, we look at three examples. The �rst is a very famous example in the calculus
of variations due to Young [56]. It is in one dimension. Unfortunately, coherence is not a serious
constraint in one dimension; so we have to arti�cially enhance the problem. However, this example
is a very useful mathematical exercise in understanding the higher dimensional problems. The
second is in two dimension and the third in three. Finally, we collect the salient features of these
examples.

6.1 Simpli�ed Example in One Dimension

Consider a bar of unit length capable of simple longitudinal deformation. In other words, our refer-
ence region is one-dimensional interval (0; 1) with a typical particle x 2 (0; 1) and our deformation
y is a scalar-valued function y(x). The deformation gradient is the scalar

f =
dy

dx
: (6.1)
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We assume that the energy density

'(f) = (f2 � 1)2: (6.2)

This is shown in Fig. 6.1. It has two \variants" characterized by the wells f = 1 and f = �1. Let
us assume that the total energy is given by:

E [y] =
Z 1

0

n
'(f(x)) + (y(x))2

o
dx =

Z 1

0

��
(f(x))2 � 1

�2
+ (y(x))2

�
dx (6.3)

Notice that this has an additional term y2 compared to Eq. (4.1). As mentioned earlier, we need to
add this term to bring out the full mathematical structure of higher dimensions because coherence is
not a serious restriction in one dimension. It is possible to �nd the following physical interpretation
for this term. Assume that our bar is bonded to an elastic foundation and the second term is the
energy of the foundation. Alternately, we may just regard this example as a mathematical exercise
to gear up for the more realistic examples that follow.

We seek to minimize this total energy over all possible continuous deformations y. We now show
that this automatically leads to a �ne scale mixture between the two variants f = 1 and f = �1.
Notice that the absolutely minimum value of the total energy is equal to zero. Therefore let us try
to �nd a deformation with zero total energy. This requires that both the terms in the integrand of
Eq. (6.3) be equal to zero. In other words, we must �nd a deformation y that satis�es

dy

dx
(x) = f(x) = �1 and y(x) = 0: (6.4)

But, if y = 0 almost everywhere, then f(x) = dy
dx
(x) = 0 and this violates the �rst requirement.

Therefore, we conclude that we can not �nd a function where both these requirements are simul-
taneously satis�ed and consequently there is no deformation y with E [y] = 0.

However, we can get as close to zero as we wish! In fact, we can �nd a sequence of deformations
yn; n = 1; 2; 3; : : : which has smaller and smaller energy going to zero in the limit as n goes to
in�nity. We now construct one such sequence. Let us begin by making the �rst term in Eq. (6.3)
equal to zero. Therefore, let us consider the deformation

y1(x) =

(
x if 0 < x < 1

2
1� x if 1

2 � x < 1
(6.5)

shown in Fig. 6.2. It looks like one big roof, with slopes f1 = dy1

dx
= 1 on left half and f1 = dy1

dx
= �1

on the right half. Therefore,

E [y1] =
Z 1

2

0
x2dx+

Z 1

1

2

(1� x)2dx = 1

12
(6.6)

This deformation respected the constraints dy
dx = �1, but did not worry about the value of y and we

end up with some energy. However, notice that we can reduce the value of the y while preserving
the slopes by making two roofs. In fact, we can reduce the value further by making three roofs,
and even further with four as so on. Therefore, for any integer n let yn be the deformation with n
roofs as shown in Fig. 6.2:

yn(x) =

(
x if 0 < x < 1

2n
1
n � x if 1

2n � x < 2
2n

(6.7)
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Figure 6.2: A sequence of deformations which minimize the total energy.

and periodically extended to the interval (0; 1). It is easy to calculate the energy of the deformation,

E [yn] = n

Z 1

2n

0
x2dx+ n

Z 2

2n

1

2n

(
1

n
� x)2dx =

1

12n2
: (6.8)

Clearly, limn!1 E [yn] = 0.
Let us review this argument. Minimizing the total energy Eq. (6.3) imposed two contradictory

requirements: dy
dx

= �1 and y = 0. There is no continuous function that satis�es this. However,
we could get very close by choosing a function whose gradient alternates between +1 and �1 very
very fast. Since we identify variants with gradients, these �ne-scale alternating gradients manifest
themselves as microstructure in martensites.

In this one-dimensional example, we added an extra term to the energy to get this behavior.
It will be clear in the subsequent examples, that one obtains this behavior even without that term
in higher dimensions. In fact, the boundary conditions and coherence play the role of that term in
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Figure 6.3: The energy density in the two-dimensional example.

higher dimensions.

6.2 Simpli�ed Example in Two Dimensions

Consider a crystal and cut some section through it. Let 
 be the two-dimensional section and let
y be the out-of-plane deformation. In particular, let 
 be a square with side length L: f(x1; x2) :
0 < x1 < L; 0 < x2 < Lg. The deformation is given by a scalar function of two variables y(x1; x2).
The deformation gradient is now a vector,

f = ry = f @y
@x1

;
@y

@x2
g = ff1; f2g: (6.9)

We assume that the energy density '(f) = '(f1; f2) is given as follows:

'(f) = (f21 � 1)2 + f22 : (6.10)

Fig. 6.3 shows a plot of this energy. Notice that this energy has two wells: one at f = f1; 0g and
another at f = f�1; 0g.

Let us now impose the boundary condition y = 0 on @
 and try to �nd the deformation y that
minimizes the total energy:

min
y=0 on @


E [y] where E [y] =
Z


'(ry(x1; x2))dx1dx2: (6.11)

We now show that this results in a situation like in Sec. 6.1. There is no deformation y which has
zero energy. However, we can get as close to zero as we wish by �nding a sequence of deformations
with a �ner and �ner mixture of variants.

First, let us be optimistic and try to �nd a deformation y that has zero energy and satis�es the
boundary condition. Since the total energy is zero and the energy density is non-negative, it means
that ' = 0 almost everywhere in 
. This in turn means that either ry = f1; 0g or ry = f�1; 0g
almost everywhere in 
. In either case, @y

@x2
= 0. Integrating this with respect to x2 we see that

y = y(x1). But, remember that y = 0 on the boundary x2 = 0 for all values of x1. Therefore
it follows that y = 0 on 
. Therefore, ry = f0; 0g and the total energy is equal to L2. This
contradicts our starting assumption that the total energy is zero. Therefore we conclude that there
is no function y that satis�es the boundary condition and has zero total energy.
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Figure 6.4: (a) A roof-like deformation with alternating gradients. (b) The gradients of the defor-
mation shown in (a).

Second we show that there is a sequence of functions yn such that the total energy of yn goes
to zero as n goes to in�nity. In other words, we can �nd a deformation whose energy is as small
as necessary. We want to construct a deformation whose energy is small. So let us start with
deformations whose energy is zero. That means that we have to start with deformations whose
gradients are either f1; 0g or f�1; 0g. See the \roof-like" functions shown in Fig. 6.4. Given any
integer n, we divide 
 into 2n strips and construct a deformation zn where the gradient alternates
between rzn = f1; 0g and rzn = f�1; 0g.

Each of these deformations have zero energy, but none of them satis�es the boundary condition.
So we have to modify them. In fact, let us do so as shown in Fig. 6.5 by cutting o� the roofs in a
triangular region in the front and the back to obtain the deformation yn. Since the gradients in these
triangular regions do not belong to the wells, the deformations yn do not have zero energy. However,
notice something. As n becomes larger, the heights of the roofs become smaller. Therefore, the
interpolating triangles become smaller. So, let us now calculate the energy of these deformations:

E [yn] =

Z
top triangles

'(0;�1)dx1dx2 +
Z
bottom triangles

'(0; 1)dx1dx2

+
Z
rest of 


'(�1; 0)dx1dx2

= '(0;�1)� (area of top triangles)� (no. of top triangles) (6.12)

+ '(0; 1)� (area of bottom triangles) � (no. of bottom triangles)

= 2� L2

4n2
� n+ 2� L2

4n2
� n

=
L2

n
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Figure 6.5: A sequence of deformations that minimize the total energy. The third and sixth elements
of this sequence are shown in (a) and (b) respectively. The deformations are shown on the left and
their gradients are shown on the right.
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Thus we see that the energy goes to zero as n goes to in�nity. In summary, when subjected to
zero boundary condition, the material prefers to make a very �ne mixture of the two variants in an
attempt to reduce its energy.

We quickly review the argument. Energy minimization forces the gradients to take the values
at the wells f�1; 0g while the boundary condition forces the average gradient to be f0; 0g. The
material achieves this by making a mixture of the two wells. This causes the deformation gradient
to be piecewise constant and the deformation to have a zig-zag nature. Because of the zig-zag
nature of the deformation, it can not meet the boundary conditions unless they are very very �ne.
Therefore, the microstructure arises as the material tries to minimize the energy on the one hand
and tries to satisfy imposed boundary condition on the other.

The following is also clear from this example. If there were only one well, energy minimization
would not force mixtures and therefore would not force microstructure. Thus, microstructure is a
direct consequence of the multi-well nature of the energy density.

6.3 Example in Three Dimensions: Fine Twins

We now turn to an example in three dimensions which is very similar to the two-dimensional
example above. Consider two matrices A;B which satisfy

A�B = a 
 n̂ (6.13)

for some vectors a and n̂. Set

F� = �A+ (1� �)B for some � 2 (0; 1): (6.14)

Assume that we have a material whose stored energy density has the following properties:

'(A) = '(B) = 0; but '(F�) > 0 for every 0 < � < 1: (6.15)

Notice that we have such a situation in Fig. 5.1b if we set A = Q1UI ;B = Q2UJ .
Suppose we take this material and subject it to the boundary condition y = F�x on @
 for

some given �. What microstructure do we expect to see? Let us �rst look at the energy of the
homogeneous deformation y = F�x:

E [y] =
Z


'(ry)dx=

Z


'(F�)dx = Vol(
)'(F�) > 0: (6.16)

Therefore, the homogeneous deformation corresponding to the boundary condition has positive
energy. However, we will now show that we can reduce the energy to zero by making a �ne-scale
mixture or microstructure of A and B. In other words, we can �nd a sequence of deformations
fyng such that the total energy goes to zero in the limit: limn!0 E [yn] = 0. The idea is very similar
to the examples above.

Since '(A) = '(B) = 0, let us �rst construct a deformation with gradients A and B. For any
positive integer n, consider the deformation zn shown in Fig. 6.6a. This deformation is continuous
because A;B satisfy the compatibility condition Eq. (6.13). It consists of alternating layers with
deformation gradientsA and B. Therefore, the deformed shape resembles the roof-like deformation
Fig. 6.4 in our previous example. Clearly, E [zn] = 0. Further, the spacing between the interfaces
decreases with increasing n so that we have many many roofs and the function zn approaches the
homogeneous deformation y = F�x. In fact, it is easy to show that

jzn � F�xj � c

n
(6.17)
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Figure 6.6: A sequence of deformations that minimize the total energy. (a) A deformation with
alternating gradients. (b) A minimizing sequence: note the alternating gradients and also the
boundary layer. (c) The interpolating function  n. (d) Schematic representation of the �ne twins.
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for some constant c. Unfortunately, no matter what n we choose, we never satisfy the boundary
condition exactly; instead, it is always jagged. We �x this with a boundary layer or interpolation
layer as before. This gives us a sequence of deformations yn shown in Fig. 6.6b. Since the gradients
in the interpolation layer take values other than A and B, the energy is not zero in this layer.
However, as n becomes large, the volume of the interpolation layer goes to zero while the gradients
do not blow up. Therefore, the total energy goes to zero. Thus we have a sequence which satis�es
the boundary condition and whose energy goes to zero in the limit. It consists of layers of A and
B alternating at a very small length-scale with a volume fraction �.

Let us now discuss the construction of the interpolation layer. In the example in Sec. 6.2, we
did so by introducing the triangles and guessing the gradients. However, such a speci�c construc-
tion becomes more and more di�cult in complicated examples. Therefore we introduce a general
construction following Chipot and Kinderlehrer [57]. For any n, consider the region 
n obtained
by removing a layer of thickness �

n
from the boundary of 
,


n =

�
x 2 
 : distance(x; @
)>

�

n

�
: (6.18)

We wish to keep the deformation zn inside 
n, but change it in the annular region 
 � 
n so
that it satis�es the requisite boundary condition. We have to do so in such a manner that the
gradient of the resulting deformation does not blow up as n!1. Here is a rather general way of
accomplishing this. Consider a scalar function  n shown in Fig. 6.6c with the following properties:

1:  n(x) =

8><
>:

0 outside 


1 inside 
n

and 2: jr nj � 2n

�
everywhere: (6.19)

Now set
yn(x) =  n(x)zn(x) + (1�  n(x))F�x: (6.20)

Clearly, yn = zn inside 
n and it satis�es the boundary condition, i.e., yn = F�x on @
. We just
have to check that the ryn does not blow up. Di�erentiating the above,

ryn = r n 
 zn +  nrzn � r n 
 (F�x) + (1�  n)F�

= r n 
 (zn � F�x) +  nrzn + (1�  n)F�:
(6.21)

Therefore,
jrynj � jr njjzn � F�xj+ j njjrznj+ j1�  njjF�j

� 2n
�

c
n
+ j njjrznj+ j1�  njjF�j

� constant independent of n:
(6.22)

Above we have used Eq. (6.19)2 and Eq. (6.17) in the �rst term. In the second and the third, we
have used j nj � 1, j1�  nj � 1 (see Eq. (6.19)1) and also rzn = A or B. Therefore,

E [yn] =
Z


'(ryn)dx =

Z

�
n

'(ryn)dx � CVol(
� 
n) (6.23)

which goes to zero as n goes to in�nity. Therefore, yn is a minimizing sequence. It consists of
layers of gradient A and B alternating at a very �ne length-scale. In summary, we conclude that
when subjected to this boundary condition, our material makes a microstructure of A and B.

We represent this schematically as shown in Fig. 6.6d. Recall (Fig. 5.1b) that we join matrices
which are compatible with a straight line. Therefore, we join A and B. We mark F� as a point on
this line because we obtain it as a mixture of A and B. Further, the position of the point on the
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line depends on the volume fraction � according to Eq. (6.14); we are close to A if � is close to 1
and close to B if � is close to 0. Thus, points on the straight line joining two matrices represent a
�ne-scale mixture at the correct volume fraction.

We close with two comments. First, notice that we can not construct this sequence for any pair
of matrices A and B. Instead, they must satisfy the compatibility condition Eq. (6.13). Second,
it is very important that the deformation gradient does not blow up in the interpolation region.
Notice in this example that the sequence of alternating gradients is compatible in some average
sense with the imposed boundary condition F� as a consequence of Eq. (6.17). This allows us
to construct the boundary layer which satis�es Eq. (6.23). If instead, we had tried to interpolate
with some other boundary condition F, the mismatch would increase with increasing n, and the
gradient would go to in�nity. This in turn would cost in�nite energy even though the volume of
the interpolation region goes to zero. Therefore, we can interpolate with diminishing energy only
between functions where the mismatch is decreasing with increasing n.

6.4 Weakly Converging Sequences and Microstructure

We will see more examples of sequences and microstructure in Sec. 7. Before we do so, let us collect
a few of the salient features of the examples above. In each example, energy minimization led us to
construct a sequence of deformations. Here are some of the general properties of these sequences.

1. Each deformation in the sequence is continuous.

2. The sequence of deformations converges uniformly as n goes to in�nity. Notice that yn ! 0
in the one and two dimensional examples, while yn ! F�x in the three dimensional example.

3. The deformation gradients do not converge at any point. In the one-dimensional example, let
us pick some point x and look at the gradient fn at this point. It jumps around between the
values +1 or �1 and does not converge. Similarly, the gradient jumps around between f1; 0g
and f�1; 0g in the two-dimensional example, and between A and B in the three-dimensional
example.

4. The deformation gradients converge in the average. In other words, if we pick any point and
consider any small region around it, then the average value of the deformation gradient in this
region converges as n ! 1. Take for example, a small interval (a; b) in the one-dimensional
example. We can divide the interval (a; b) into two regions: one where the gradient fn = 1
and another where the gradient fn = �1. As n becomes large, the length of these two
regions become almost equal. Therefore the average value of the deformation gradient in this
interval (a; b) approaches the limit 1

2(+1) +
1
2(�1) = 0. Similarly, the average value of the

deformation converges to 1
2f+1; 0g+ 1

2f�1; 0g = f0; 0g in the two-dimensional example and
to �A+ (1� �)B = F� in the three-dimensional example.

5. The deformation gradients remain uniformly bounded. In other words, they do not become
larger and larger as n! 1. Notice that this is true even in the triangle of the two-dimensional
example and interpolation region in the three-dimensional example.

We call any sequence with these properties a weakly converging sequence. It is clear from the
examples above, that such sequences can be regarded as a description of the microstructure that is
observed in these materials.

Let us now try to understand the circumstances in which energy minimization forces a ma-
terial to form microstructure. Let us go back to the one-dimensional example. The sequence
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of deformations that we considered has a limit y1 = 0. The energy of this limit deformation
E [y1] = R 1

0 '(ry1)dx = '(0) = 1. On the other hand, the limit of the energy limn!1 E [yn] = 0
according to Eq. (6.8). Therefore, the energy of the limit is greater than the limit of the energy:

E [y1] > lim
n!1 E [y

n]: (6.24)

This is because the deformation gradient is equal to 0 in the limit, but has the values �1 for any
n; thus by forming a sequence we can take advantage of the fact that the fact that

'(0) > '(�1) (6.25)

for our two well energy. Thus, the microstructure arises as the material takes advantage of the
multi-well energy. If on the other hand, we have a material which satis�es

E [y1] � lim
n!1 E [y

n] = 0 (6.26)

for each weakly converging sequence. Then, making alternating gradients does not help the ma-
terial to minimize the energy. A one-well structure gives us this property which is called lower
semi-continuity of the energy. In fact, notice that we do not see any microstructure above the
transformation temperature where we have only one well { the austenite well. We refer the reader
to [58, 59, 60] for further discussion of these mathematical issues.

6.5 Length-Scale of the Microstructure

Let us conclude with a short discussion of what controls the length-scale of the microstructure.
In the theory presented above, the microstructure is in�nitely �ne. However, in reality, the mi-
crostructure is not in�nitely �ne, but has some distinct length-scale. So what determines the length
scale? The answer to this is not completely clear, though we have a few guesses.

The �rst and the most obvious is the interfacial or the twin-boundary energy [11, 45, 61, 62, 63].
Let us go back to the two-dimensional example. Suppose that in addition to the bulk energy, we have
an interfacial energy. Suppose for simplicity that this is a constant  o per unit length. Therefore
the total energy { bulk plus interfacial { for the deformation yn is given by

Total Energy = bulk energy according to Eq. (6.12)
+  o � (length of each interface)� (number of interfaces)

=
L2

n
+  o � (L)� (n)

=
L2

n
+ 2Ln o

(6.27)

Notice that this is not minimized at n = 1. As n becomes large, the bulk energy goes down
but the interfacial energy goes up. The sum is in fact minimized at n = C

p
L for some constant

C. Therefore, the length-scale of the minimizing microstructure is proportional to
p
L where L

is the length of the specimen. This is in general qualitative agreement with experiments, see for
example Arlt [62]. However, there are some de�ciencies. We took a minimizing sequence of the
bulk energy and applied the surface energy to it. What we should do instead is to minimize the
sum of the bulk and the surface energy. Kohn and M�uller [63] show in an example that this leads to
a microstructure which re�nes near the boundary, but is coarse in the interior. Once again, there
is general qualitative agreement with experiments [61].
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Ω

Ω2

1

Figure 7.1: An exact austenite-martensite interface.

The second factor in determining the length-scale is dynamics. While energy minimization is
a good way to understand some aspects of microstructure, microstructure forms by some dynamic
process. There is some evidence that dynamic evolutionary processes might impose some length-
scale [64].

Finally, we are using a continuum theory. This is good only up to some length-scale; beyond
that, we have to use some more complete theory.

In any case, despite the failure of the theory presented above to capture the length-scale, the
theory is very successful in capturing many aspects of the microstructure as we will see in the next
section.

7 Special Microstructures

In this section we study some important microstructures. We use two key ideas. The �rst is that
a microstructure can be represented using a sequence of deformations with �ner and �ner details.
The second is that that energy minimization forces the gradients of these sequences to take values
only in the energy wells. Therefore, we construct sequences of deformations whose gradients belong
to the energy wells. Based on these constructions, we will see that we can predict various aspects
of the microstructure.

7.1 Austenite-Martensite Interface

Perhaps the most signi�cant microstructure in the study of martensites is the austenite-martensite
interface or habit plane. Therefore, let us look at this interface. Let us begin with the simplest
situation shown in Fig. 7.1 where a planar interface separates the austenite and the Ith variant
of martensite. We call this an exact austenite-martensite interface. To form such an interface, we
seek a continuous deformation y such that

ry =

(
I in 
1

QUI in 
2
for some rotation Q. (7.1)

If the deformation has to be continuous, we have to satisfy the compatibility or coherence condition

QUI � I = b
 m̂ (7.2)

for some vectors b and m̂. We appeal to Result 5.2 to see if this is possible. Substituting F =
QUI ;G = I in step 1 of this result, we see that

C = G�TFTFG�1 = I(QUI)
T (QUI)I = UIQ

TQUI = U2
I : (7.3)
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Figure 7.2: (a) A typical austenite-martensite interface. (b) A sequence of deformations that
describe the austenite-martensite interface.

Clearly, C 6= I and we proceed to step 3. According to this, C = U2
I must have an eigenvalue equal

to one in order to satisfy Eq. (7.2). In other words, one of the eigenvalues of the transformation
matrix must be equal to one in order to form an exact austenite-martensite interface. However,
recall that the transformation matrix is known for a given material and an overwhelming majority
of materials do not satisfy this condition1 . Therefore, it is not possible to form an exact austenite-
martensite interface in most martensitic materials and this is consistent with observations.

Instead one observes interfaces like that shown in Fig. 7.2a. This has the austenite on side
and �ne-twins of two variants of martensite on the other. This led Wechsler, Lieberman and Read
[9] as well as Bowles and McKenzie [10] to independently propose the Crystallographic Theory of

Martensite or the Phenomenological Theory of Martensite. I believe that this is the most successful
and signi�cant result in the study of martensite. Ball and James [11] have since shown that it can
be obtained as a consequence of energy minimization.

Consider the sequence of deformations with gradients as shown in Fig. 7.2b. Ignore the grey
strip for the moment. Let us assume that the matrices A and B can form an interface with each
other, but neither can form an interface with C. In other words, let us assume that they satisfy

A�B = a 
 n̂ (7.4)

but do not satisfy the conditions

A�C = c
 m̂; B �C = d 
 m̂ (7.5)

for any vectors c;d; m̂. Therefore, this deformation is not continuous. In order to �x this, let us
introduce an interpolation as in Sec. 6.3 in a layer of thickness �=n shown in grey in Fig. 7.2b to

1I know of only two materials which do satisfy this condition. The �rst, Ti-29%Ta, was specially obtained by
Bywater and Christian [65] by very carefully manipulating the composition till this condition was satis�ed. They did
observe an exact austenite-martensite interface in this material. The second is Ti-Ni-Cu[66], where once again this
is true only at a very special composition.
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Figure 7.3: The schematic representation of an austenite-martensite interface.

obtain a continuous deformation yn. Now, let n ! 1. Clearly, the volume of the interpolation
region goes to zero. But we want to make sure that the gradients in this region does not blow up.
This is possible if and only if the average deformation on both sides are compatible, i.e., if and only
if

(�A+ (1� �)B)�C = b
 m̂ (7.6)

for some vectors b; m̂. Therefore, the sequence of deformations in Fig. 7.2b is a minimizing sequence
if and only if A;B;C belong to the energy wells and

1: A�B = a
 n̂
2: (�A+ (1� �)B)�C = b
 m̂:

(7.7)

Let us now see if it is possible to obtain an austenite-martensite interface as shown in Fig. 7.2a
as a minimizing sequence described above. We set

C = I; B = Q2UI ; A = Q1UJ (7.8)

so that these matrices belong to the relevant energy wells. Substituting these in Eq. (7.7) and
rewriting it, we obtain

1: QUJ �UI = a
 n̂
2: Q0(�QUJ + (1� �)UI) = I+ b
 m̂

(7.9)

where Q = QT
2Q1 and Q0 = Q2 are rotations. These relations are shown schematically in Fig. 7.3.

Therefore, we conclude that we can form an interface between the austenite and �ne twins of the
Ith and Jth variants of martensite if and only if we can satisfy Eq. (7.9) for some rotations Q;Q0,
vectors a;b; n̂; m̂ and some scalar � satisfying 0 � � � 1. Notice that the �rst of the equations
above is the twinning equation. We call the second the austenite-martensite interface equation.

Before we try to solve these, let us us show that we can obtain the crystallographic theory of
martensite from Eq. (7.9). Substituting Eq. (7.9)1 in Eq. (7.9)2, we can rewrite Eq. (7.9)2 as

I+ b
 m̂ = Q0(UI + �a
 n̂) = Q0(I+ �a
 (U�1I n̂))UI (7.10)

Recall from Sec. 5.2 that a � (U�1I n̂)) = 0 and hence, the (I + �a 
 (U�1I n̂)) describes a simple
shear. Introducing the notation

p = b; d = m̂; R = Q0; S = (I+ �a
 (U�1I n̂)); B = UI (7.11)
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we can rewrite the above in the traditional manner:

RSB = I+ pd: (7.12)

In other words, we obtain an invariant plane by applying a Bain distortion B, a lattice-invariant
shear S and a rotation R. This is one statement of the crystallographic theory [7].

Let us now try to solve Eq. (7.9). We already know how to solve the twinning equation, Eq.
(7.9)1. Let us assume that it has a solution and we have determined Q; a; n̂. Based on it, we can
solve the austenite-martensite interface equation using the following result of Ball and James [11].

Result 7.1 Given a matrix UI and vectors a; n̂ which satisfy the twinning equation, Eq. (7.9)1, we
can obtain a solution to the austenite-martensite interface equation, Eq. (7.9)2, using the following
procedure.

1. Calculate

� = a �UI (U
2
I � I)�1n̂ and � = tr(U2

I)� det(U2
I)� 2 +

jaj2
2�

: (7.13)

The austenite martensite interface equation has a solution if and only if

� � �2 and � � 0: (7.14)

2. To �nd the solutions, calculate

� =
1

2

 
1�

r
1 +

2

�

!
: (7.15)

3. Calculate

C = (UI + �n̂
 a)(UI + �a
 n̂): (7.16)

Find the eigenvalues �1 � �2 � �3 and the corresponding eigenvectors ê1; ê2; ê3 of C. Auto-
matically, �2 = 1. The following solve the austenite-martensite interface equation:

b = �

0
@
s
�3(1� �1)
�3 � �1

ê1 + �

s
�1(�3 � 1)

�3 � �1 ê3

1
A

m̂ =

p
�3 �

p
�1

�
p
�3 � �1

�
�p1� �1ê1 + �

p
�3 � 1ê3

� (7.17)

where � is chosen to make jm̂j = 1 and � = �1. Notice that by choosing � = +1 we obtain
one solution (b+; m̂+) while by choosing � = �1 we obtain another (b�; m̂�). For each
solution, we can obtain Q0 from Eq. (7.9)2.

4. If � < �2, repeat step (3) after replacing � with (1� �).
Notice that for each UI ; a; n̂, the result above yields up to 4 solutions to Eq. (7.9)2. Further, recall
that for each pair of variants I; J , it is possible to have two solutions to the twinning equation.
Therefore, for any given pair of variants, it is possible to form up to eight austenite-martensite
interfaces.
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7.1.1 Cubic to Tetragonal Transformation

The transformation matrices for this case are given in Table 4.1, and the possible twinning modes
were obtained in Sec. 5.4. Let us now study the austenite-martensite interfaces. Let us begin with
the variants 1 and 2. Substituting U1 according to Table 4.1 and a; n̂ according to Eq. (5.18)1 in
Result 7.1, we conclude that it is possible to form an austenite martensite interface if and only if

� < 1 < � and
1

�2
+

1

�2
� 2

or
� < 1 < � and �2 + �2 � 2:

(7.18)

If equality holds, then � = 1
2 . Otherwise,

� =
1

2

 
1�

s
1 +

2(�2 � 1)(�2 � 1)(�2 + �2)

(�2 � �2)2
!
: (7.19)

The two solutions with � are given by

b� = �
1� �2

1 + �2

�
�� + �

2
;�� � �

2
;��

�
;

m̂� =
1

�

�
�� + �

2
;�� � �

2
; 1

�
;

where

� =

s
�2 + �2 � 2

1� �2 ; � =

s
2�2�2 � �2 � �2

1� �2 ;

(7.20)

� is a non-zero constant chosen to make jm̂�j = 1. The two solutions with (1� �) are obtained by
interchanging the �rst two components of b�; m̂� above. Further, if we choose the other twinning
solution Eq. (5.18)2 for this pair of variants, we would obtain four more solutions by changing
the sign of the �rst component in Eq. (7.20). Thus, we obtain up to eight austenite-martensite
interfaces for this pair of variants. Since there are three such pairs of variants, there are a total of
up to 8� 3 = 24 di�erent austenite-martensite interfaces in this case.

In summary, we can form an austenite-martensite interface if and only if Eq. (7.18) is satis�ed.
Then, we can have up to 24 austenite-martensite interfaces which can be obtained by permuting
the components of the vectors in Eq. (7.20).

7.1.2 Cubic to Orthorhombic transformation

The transformation matrices for this case are given in Table 4.3 and we have studied the di�erent
twins in Sec. 5.5. Recall that some pairs of variants form compound twins while the other pairs
form Type I and the reciprocal Type II twins.

According to Result 7.1, we can form an austenite-martensite interface using the compound
twins if and only if

� < 1; (�� 1)(
 � 1) < 0; and
1

�2
+

1


2
� 2

or
� > 1; (�� 1)(
 � 1) < 0; and �2 + 
2 � 2:

(7.21)
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Figure 7.4: (a) A twin within a twin. (b) Schematic representation of this microstructure.

We omit the details of the solution because common materials including CuAlNi do not satisfy
these conditions. This is consistent with experimental observations.

The algebra becomes too di�cult to obtain the general results for the Type I and Type II
twins. Therefore, we specialize to the case of CuAlNi. Using Result 7.1, we �nd that we can form
an austenite-martensite interface with either of these twins and the solutions are as follows.
Interfaces using Type I twin:

� = 0:2906
b+ = f0:06565; 0:06573; 0:02379g; m̂+ = f0:6355;�0:7484; 0:1897g;
b� = f0:05763;�0:07473; 0:01700g; m̂� = f0:7154; 0:6497; 0:2572g:

(7.22)

Interfaces using Type II twin:

� = 0:3011
b+ = f0:05599;�0:07068; 0:02359g; m̂+ = f0:7306; 0:6679; 0:1420g;
b� = f0:06531; 0:06538; 0:01211g; m̂� = f0:6350;�0:7275; 0:2599g:

(7.23)

These solutions are for the case of � for the pair of variants 1 and 3. We obtain 4 more for the case
1 � � for this same pair of variants. Further, there are 12 pairs of variants which can form these
twins. Therefore there are 12� (4+4) = 96 austenite-martensite interfaces. It turns out that these
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Figure 7.5: A twin within a twin within a twin. The schematic representation of this microstructure
is shown on the upper-right-hand corner.

can be obtained by permuting the components of the solutions Eq. (7.22) and Eq. (7.23) above.
We also note that these solutions agree very well with experimental observations [67, 68].

7.2 Twins Within Twins

It is quite common to observe an interface separating two sets of �ne twins as shown in Fig. 7.4.
Using the arguments above, it is easy to conclude that this is an energy minimizing microstructure
if and only if A;B;C;D are each of the form QUI and satisfy

1: A�B = a1 
 n̂1
2: C�D = a2 
 n̂2
3: (�1A+ (1� �1)B)� (�2C+ (1� �2)D) = b
 m̂

(7.24)

Notice that we do not require either A or B to be compatible to either C or D. Therefore, this
is not an exact interface, but requires some interpolation layer; and this is possible with vanishing
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energy if the two sides are compatible on average, i.e., if Eq. (7.24)3 holds. It is possible to �nd
many solutions to Eq. (7.24) which are consistent with observations { see for example Chu and
James [69].

Let us contrast this situation with that in Sec. 5.8 where we also have four matrices. In Sec. 5.8,
all four matrices meet at one point and there is no interpolation region. Therefore, notice that the
compatibility conditions Eq. (5.21) are much stricter than here Eq. (7.24). Therefore, approximate
interfaces, where only the average quantities are coherent, impose smaller restrictions.

Proceeding on similar lines, it is possible to make more and more complicated microstructure.
Let us consider the twins within twins within twins as shown in Fig. 7.5. This requires that the
matrices A;B;C;D;E;F;G;H are each of the form QUI and they satisfy

1: A�B = a1 
 n̂1
2: C�D = a2 
 n̂2
3: E� F = a3 
 n̂3
4: G�H = a4 
 n̂4
5: (�1A+ (1� �1)B)� (�2C+ (1� �2)D) = b1 
 m̂1

6: (�1E+ (1� �1)F)� (�2G+ (1� �2)H) = b2 
 m̂2

7: (�3(�1A+ (1� �1)B) + (1� �3)(�2C+ (1� �2)D))
� (�3(�1E + (1� �1)F) + (1� �3)(�2G+ (1� �2)H))

= b
 m̂:
(7.25)

It is important to make one comment. Notice in the Fig.7.5 that the twins (say, A and B)
alternate in bands of thickness proportional to 1=n2 while the twins within twins (say, A{B and
C{D) alternate in bands of thickness proportional to 1=n. This means that the length-scale of the
twins are much smaller than that of the twins within twins which in turn in much smaller than
that of the macroscopic specimen. In other words, there must be a wide separation of length-scales
in order to make this successive levels of microstructure.

7.3 Wedge-like Microstructure

It is very common to observe a wedge-like or spear-like microstructure in many martensitic alloys
[33, 68, 69, 70, 71, 72, 73]. When the alloy is cooled from above the transformation temperature,
wedge-shaped regions of martensite grow into the austenite. As shown in Fig. 7.6, the wedge
consists of two sets of �ne twins separated by a midrib. This microstructure provides an easy way
for the initiation of transformation and is thus important for thermoelasticity and reversibility of
transformation. It is shown in Bhattacharya [74] that only very special materials whose lattice
parameters satisfy certain highly restrictive conditions can form the wedge-like microstructure.
The lattice parameters of common shape-memory alloys satisfy this relation and their morphology
shows good agreement with the predictions. This suggests that microstructure and consequently
the macroscopic behavior of martensites may depend very delicately on the lattice parameters.

Let us review the argument in [74]. The wedge-like microstructure can be represented by the
sequence of deformations shown in Fig. 7.7. This minimizes the energy if and only if A;B;C;D
are each of the form QUI and they satisfy

1: A�B = a1 
 n̂1
2: C�D = a2 
 n̂2
3: (�1A+ (1� �1)B)� I = b1 
 m̂1

4: (�2C+ (1� �2)D)� I = b2 
 m̂2

5: (�1A+ (1� �1)B)� (�2C+ (1� �2)D) = b
 m̂

(7.26)
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Austenite Austenite

(a)                                                                  (b)

Figure 7.6: The schematic view of a wedge-like microstructure. (a) The wedge in a three-
dimensional specimen. (b) A typical cross-section.
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Figure 7.7: A sequence of wedge-like deformations.
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Eq. (7.26)1 and Eq. (7.26)2 are the compatibility conditions for the twins, Eq. (7.26)3 and Eq.
(7.26)4 are those for the two sets of austenite-martensite interfaces and Eq. (7.26)5 is the condition
for the midrib. Using Eq. (7.26)3 and Eq. (7.26)4, we can rewrite the Eq. (7.26)5 above as

b1 
 m̂1 � b2 
 m̂2 = b
 m̂: (7.27)

This is possible if and only if b1 is parallel to b2 or if m̂1 is parallel to m̂2. However, we can not
have m̂1 parallel to m̂2, lest the wedge should collapse to a plane or expand to parallel bands.

Putting all this together, we can conclude the following after some rearrangement. A material
can form a wedge-like microstructure if and only if for some choice of variants I , J , K and L, we
can satisfy

1: Q1UJ �UI = a1 
 n̂1
2: Q2UL �UK = a2 
 n̂2
3: Q3(UI + �1a1 
 n̂1) = I+ b1 
 m̂1

4: Q4(UK + �2a2 
 n̂2) = I+ b2 
 m̂2

5: b1 is parallel to b2 while m̂1 is not parallel to m̂2

(7.28)

for some rotations Q1 : : :Q4, vectors a1; a2; n̂1 etc.
The �rst two are twinning equations while the second two are the austenite-martensite interface

equations. We already know how to solve these. Therefore, to check if a material can form a
wedge, we �nd all possible solutions b; m̂ for the austenite-martensite interface and see if any two
of the vectors b are parallel while the corresponding vectors m̂ are not. The given material can
form a wedge if and only if we can �nd such a pair. The vectors b and m̂ are functions of the
transformation matrix U1. The condition that two bs are parallel while the corresponding m̂s are
not de�nes a special relationship amongst the components of U1. Only materials which satisfy this
special relationship can form a wedge. Therefore, the microstructure can depend very delicately on
the transformation matrix. This will be clear in the following examples.

7.3.1 Cubic to Tetragonal Transformation

We found all the solutions to the austenite-martensite interface in Sec. 7.1.1. Recall that they are
obtained by permuting the components of the vectors in Eq. (7.20). If the components of one vector
is obtained by permuting the components of another, the two vectors are parallel if and only if two
components are equal. Thus, two vectors b are parallel if and only if

� = �� + �

2
or � = �� � �

2
or

� � �

2
= �� + �

2
: (7.29)

However, the last condition implies that the corresponding vectors m̂ are also parallel. Therefore,
a material undergoing a cubic to tetragonal transformation can form a wedge if and only if

2� = �(� � �) , 4�2 = �2 + �2 � 2�� , (�2 + �2 � 4�2)2 = 4�2�2: (7.30)

Substituting for �; � from Eq. (7.20), we conclude that a material undergoing a cubic to tetragonal
transformation can form a wedge if and only the transformation strain U1 shown in Table 4.1
satis�es

�2 =
(1� �2)2 + 4�2(1 + �2)

(1� �2)2 + 8�4
: (7.31)

This relation is plotted in Fig. 7.8. In that �gure we also plot measured transformation strain of
some common martensites. Notice that the alloys in which wedges have been observed satisfy this
relation very closely. Further, the various morphological details of wedge predicted above { the
normals to all the interfaces m̂1; m̂2; m̂; n̂1; n̂2, volume fractions �1; �2 and shears b1;b2;b; a1; a2
{ agree quite well with experimental observations [74].
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a  -- NiMn
b -- NiZnCu
c -- NiAl
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f -- FeAlC
g -- FePt
h -- FeCrC
i -- FeNiC

Figure 7.8: The special relations that the transformation strain has to satisfy in order to form a
wedge, or in order to be self-accommodating. The measured lattice parameters of some alloys are
also shown. Wedges have been observed in alloys b,d,f and i while alloys a-e and g are shape-memory
alloys.

7.3.2 Cubic to Orthorhombic Transformation

Recall that a material undergoing this type of transformation can form compound, Type I and
Type II twins. We can form a wedge using compound twins on both sides if and only if the lattice
parameters satisfy Eq. (7.21) and

�2 =
2a2
2

2�2
2+ �2 + 
2 � 2
or �2 =

2a2
2

4�2
2 � �2 � 
2 : (7.32)

Most common materials including CuAlNi do not satisfy these conditions.
The algebra gets too complicated for the Type I and Type II twins. So, the rest of the calculation

has to be carried out numerically. Bhattacharya [74] found that

� We can form wedges with Type I twins on 2 surfaces in the �� � � 
 space

� We can form wedges with Type II twins on 2 surfaces in the �� � � 
 space

CuAlNi lies extremely closely to two surfaces { one with Type I twins and Type II twins [74, 75].
Further, the solutions above give us various morphological details about the wedge. In particular,
wedges with Type I twin resemble Fig. 7.9a while those with Type II twins resemble Fig. 7.9b. All
of these agree well with experimental observations [74].

8 Analysis of Microstructure

We understood why martensitic materials form microstructure in Sec. 6 and we studied some very
interesting examples in Sec. 7. In the process, we developed a description of microstructure and a
method for constructing them. Using these, we can construct as many di�erent examples as wish.
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(a) (b)

Figure 7.9: Wedges in CuAlNi. (a) The morphology of wedges with Type I twins. (b) The
morphology of wedges with Type II twins.

However, this approach is limited. We are often interested in more general questions; for example,
can a material form a self-accommodating microstructure? In such situations, constructive schemes
are not completely satisfactory. If we are lucky, we may be able to construct one with the desired
properties. However, if we are unable to do so, we are never sure whether this is because of some
inherent material property or because we simply failed to come up with the right construction.
Therefore, we need some more general tools or methods.

The average compatibility condition or the minors relations is one such very important result.
It gives us a very quick way of ruling out some microstructure. In other words, it has the ability to
identify circumstances when a material can not form a microstructure with some desired properties.
We study this in the �rst part of this section. This will be one of the main tools in our study of
the shape-memory e�ect in the next section. In the second part, we give an introduction to some
of the other mathematical concepts that have proven useful in the study of microstructure.

8.1 Average Compatibility Conditions or the Minors Relations

Consider the sequence of deformations fyng that we studied in Sec. 6.3 (Fig. 6.6). Notice that for
each n, we can split the domain 
 into 3 sub-regions: 
n

A where ryn = A, 
n
B where ryn = B and

the interpolation region 
n
inter . As n!1, it is clear that the volume fraction of 
n

A approaches �,
the volume fraction of 
n

B approaches (1� �) and the volume fraction of the interpolation region

n
inter approaches 0, i.e,

lim
n!1

Vol. 
n
A

Vol. 

= �; lim

n!1
Vol. 
n

B

Vol. 

= 1� � and lim

n!1
Vol. 
n

inter

Vol. 

= 0: (8.1)

To describe all of this in short, we say that this is a microstructure involving matrices A and B
with volume fraction � and (1� �).

More generally, a microstructure involving the matrices F1;F2; : : : ;FM in the volume fraction

�1; �2; : : :�M means a weakly converging sequence of deformations yn that satis�es the following.
For any n, we can divide our domain 
 into M + 1 sub-regions: 
n

1 (where ryn = F1), 

n
2 (where
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ryn = F2), . . . , 

n
M (where ryn = FM) and an interpolation region 
n

inter . Further,

lim
n!1

Vol. 
n
1

Vol. 

= �1; lim

n!1
Vol. 
n

2

Vol. 

= �2; : : : lim

n!1
Vol. 
n

M

Vol. 

= �M ;

lim
n!1

Vol. 
n
inter

Vol. 

= 0;

where �m � 0; and
MX
m=1

�m = 1:

(8.2)

We use this terminology to state a very important result.

Result 8.1. Average compatibility conditions or the minors relations. Morrey [76]
Suppose we have a microstructure involving the matrices F1;F2; : : : ;FM in the volume fraction
�1; �2; : : :�M . Suppose further that the microstructure satis�es the boundary condition corre-
sponding to the matrix F; i.e., yn = Fx on the boundary @
. Then, the following are true.

1: F =
MX

m=1

�mFm

2: cof F =
MX
m=1

�m(cof Fm)

3: detF =
MX
m=1

�m(detFm)

(8.3)

Further, if detF1 = detF2 = : : := detFM 6= 0, then we can rewrite the second relation above, Eq.
(8.3)2 as

F�T =
MX

m=1

�mF
�T
m : (8.4)

We will soon see that these relations have the following interpretation. The �rst relation, Eq.
(8.3)1, says in some average way that lines remain unbroken in a coherent microstructure, the
second relation, Eq. (8.3)2, says that planes or surfaces remain unbroken and the third relation,
Eq. (8.3)3, says that volumes remain unbroken. Therefore, we call these the average compatibility
condition.

We will use these extensively in the next section. Notice that these relations impose very severe
restrictions on the matrices that can participate in a microstructure. Suppose we have some matrices
F1;F2; : : : ;FM for which we can not satisfy these relations for any volume fractions �m, then we
can immediately say that we can not construct a microstructure with these matrices. The �rst of
these relations is widely known and used even in the materials science literature (see for example
Saburi and Wayman [77]). The other two are relatively unknown in this literature, but have played
a very central role in the recent mathematical treatments { see for example, [21, 50, 78, 79]. In
fact, these relations in one form or the other have been very used in a variety of subjects including
nonlinear elasticity and composite materials (see for example, [58, 76, 80, 81, 82]).

We now turn to understanding and proving these conditions. We begin with a simple argument
in a special case. This gives us the physical interpretation. We take the reference crystal 
 to
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Figure 8.1: A continuous piece-wise homogeneous deformation that satis�es homogeneous boundary
conditions. Notice that a straight line in the reference con�guration becomes jagged but remains
unbroken after deformation.

be an unit cube { see Fig. 8.1. Let us ignore the interpolation region; so we have a continuous
deformation y which satis�es the boundary condition y = Fx on @
 and whose gradients take the
values F1;F2; : : : ;FM with volume fraction �1; �2; : : :�M . We choose our coordinate system to be
parallel to the edges of the cube.

We begin with the �rst relation, Eq. (8.3)1. Consider any point xo = f0; x2; x3g on the left face
of the reference cube and consider a line parallel to the x1 axis that passes through it. Let us mark
some K points x1;x2; : : : ;xK on the reference line in such a manner that any segment (xk�1;xk)
lies completely in a region with constant gradient. After deformation, this straight line goes to a
jagged, but unbroken, line as shown in Fig. 8.1. Since the line remains unbroken after deformation,
we can obtain the vector joining the end points by simply taking the vector sum of the di�erent
segments:

y(xK)� y(xo) =
KX
k=1

(y(xk)� y(xk�1)) : (8.5)

This is the key idea behind Eq. (8.3)1. The rest is just a matter of calculation to express this in
terms of the gradients. First, notice that both xo and xK are on the boundary @
; so we can use
the boundary condition to calculate

y(xK)� y(xo) = FxK � Fxo = F(xK � xo) = Fê1 (8.6)

where ê1 is the unit vector parallel to the x1 axis. Second, the gradient is constant in the line
segment (xk�1;xk),

y(xk)� y(xk�1) = Fk(xk � xk�1) = Fk(�kê1) = �kFkê1: (8.7)

Above, we have used the fact that (xk�xk�1) is parallel to ê1 and has length �k. Substituting Eq.
(8.6) and Eq. (8.7) in Eq. (8.5), we obtain

Fê1 =
KX
k=1

(�kFk ê1) =

 
KX
k=1

�kFk

!
ê1: (8.8)
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This relation is in fact true for any line parallel to the x1 axis though the number of segments K
and their lengths �k may depend on the coordinates (x2; x3) of the starting point xo. If we average
this relation over all such lines, i.e., if we integrate this relation over all x2; x3, we obtain,

Fê1 =

Z 1

0

Z 1

0

 
KX
k=1

�kFk

!
ê1dx2dx3 =

 Z 1

0

Z 1

0

KX
k=1

�kFkdx2dx3

!
ê1 =

 
MX

m=1

�mFm

!
ê1 (8.9)

where �m are the volume fractions of the di�erent gradients. Above, we have used the fact that
integrating the length fractions over an area gives us the volume fractions. We can similarly obtain
the relations,

Fê2 =

 
MX

m=1

�mFm

!
ê2 and Fê3 =

 
MX
m=1

�mFm

!
ê3 (8.10)

using lines parallel to the x2 and the x3 axes. Since fê1; ê2; ê3g is a basis, these three relations give
the required result, Eq. (8.3)1. Once again, the key idea is that lines remain unbroken as expressed
by Eq. (8.5).

Let us now turn to the second relation, Eq. (8.3)2. Consider the plane P = fx1 = constantg in
the reference con�guration. We can now split this plane into K pieces, P1;P2; : : :Pk : : :PK , such
that the gradient is constant in each of these pieces. Let �k be the area fraction of the piece Pk.
After deformation, this plane transforms to a \hilly landscape". Since the deformation gradient
is constant in each piece Pk, these pieces remain planar even after deformation though their area
and their orientation may have changed. Since the deformation is continuous, there are no tears in
the landscape. Therefore, the area enclosed by the boundary of the plane P is given by the vector
sum of the the areas of the sub-regions Pk. This is the key idea. The rest is calculation. Recall
that from Sec. 2 that areas transform as the cof ry. Therefore, the area enclosed by the boundary
of P after deformation is given by (cof F)ê1 using the boundary condition while the area of the
sub-regions Pk is given by �k(cof Fk)ê1. Therefore, we obtain,

(cof F)ê1 =

 
KX
k=1

�kcof Fk

!
ê1 (8.11)

where �k are the area fractions. Averaging this relation over all parallel planes, i.e., integrating
this relation over all x1, we obtain

cof Fê1 =

 
MX
m=1

�mcof Fm

!
ê1: (8.12)

Above, we have used the fact that integrating the area fractions over a length gives us the volume
fractions. We can obtain similar relations for ê2 and ê3, and therefore we obtain Eq. (8.3)2. Once
again, the key idea is that planes remain unbroken after continuous deformation.

The third relation, Eq. (8.3)3 is even simpler. Recall from Sec. 2 that volume changes as
the determinant of the deformation gradient. Therefore, the volume of any subregion 
m after
deformation is given by

Vol. y(
m) = (detFm)(Vol. 
m): (8.13)

However, the boundary of the body deforms according to the boundary condition. Therefore, we
can calculate the total volume of the body after deformation as

Vol. y(
) = (detF)(Vol. 
): (8.14)
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Since the deformation of the body is continuous, the volume of the body is equal to the sum of the
volume of the parts:

(detF)(Vol. 
) =
MX
m=1

(Vol. 
m)(detFm): (8.15)

Dividing this equation by (Vol. 
) and using the de�nition of volume fraction, we obtain the
required relation, Eq. (8.3)3. Thus, this relation tells us that the volume of the body is equal to
the sum of the volume of the parts.

We now turn to a more general proof which uses the divergence theorem. We consider any
general domain 
 and any microstructure involving the matrices F1;F2; : : : ;FM in the volume
fraction �1; �2; : : :�M described by a sequence, possibly with interpolation regions.

We begin with Eq. (8.3)1. For any n, consider the integral of ryn over 
. We can evaluate this
in two ways. The �rst uses the knowledge of the values of ryn:

Z


ryn(x)dV =

MX
m=1

Z

n
m

ryn(x)dV +
Z

n
inter

ryn(x)dV

=
MX

m=1

Z

n
m

FmdV +

Z

n
inter

ryn(x)dV (8.16)

=
MX

m=1

(Vol. 
n
m)Fm +

Z

n
inter

ryn(x)dV

since we know that ryn = Fm in 
n
m. The second uses the divergence theorem and the boundary

data. Z


ryn(x)dV =

Z
@

yn 
 n̂dA

=

Z
@

Fx
 n̂dA

=

Z


r(Fx)dV (8.17)

=

Z


FdV = (Vol. 
)F:

We have used the divergence theorem in the �rst line, the boundary condition yn = Fx on @
 to
go from the �rst to the second line, the divergence theorem once again to go from the second to
the third and the fact that r(Fx) = F where F is a constant matrix to go from the third to the
fourth. Comparing these two equations and dividing them by (Vol. 
), we obtain,

F =
MX

m=1

Vol. 
n
m

Vol. 

Fm +

1

Vol. 


Z

n
inter

ryn(x)dV: (8.18)

Take the limit as n ! 1. Notice that the last term drops out (the volume of the interpolation
region goes to zero while the integrand remains uniformly bounded) and this equation reduces to
Eq. (8.3)1 using the volume fractions de�ned in Eq. (8.2).

Let us skip the second relation momentarily and look at the third, Eq. (8.3)3. We use the
fact that the determinant is a \null-lagrangean", i.e., the integral of the determinant of a gradient
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depends only on the boundary values. This is because we can express the determinant of a gradient
as the divergence of some vector-valued function: for each y, we can �nd a function fy such that

detry = r � fy : (8.19)

(Here, we use the superscript y to remind us that this function is associated with the deformation
y.) We will show this in a moment. We use this and the divergence theorem twice (as in Eq. (8.17))
to obtainZ



detryndV =

Z


r � fyndV =

Z
@

fy

n � n̂dA =

Z
@

fFx � n̂dA

=
Z


r � fFxdV =

Z


detFdV = (detF)(Vol. 
):

(8.20)

On the other hand, we can use the knowledge of the gradients as in Eq. (8.16) to calculate

Z


detrydV =

MX
m=1

(detFm)(Vol. 

n
m) +

Z

n
inter

detrydV: (8.21)

Comparing Eq. (8.20) and Eq. (8.21), we obtain

(Vol. 
)(detF) =
MX
m=1

(Vol. 
n
m)(detFm) +

Z

n
inter

detrydV: (8.22)

Dividing this relation by (Vol. 
) and taking the limit as n!1, we obtain Eq. (8.3)3 as desired.
We now return to Eq. (8.19). Let us introduce the permutation symbol �ijk . For i; j; k = 1; 2; 3,

�ijk =

8>>>>><
>>>>>:

0 if i = j or j = k or i = k

+1 if i; j; k is an even permutation of 1; 2; 3, e.g. if ijk = 231

�1 if i; j; k is an odd permutation of 1; 2; 3, e.g. if ijk = 213

: (8.23)

Using this symbol and the summation convention, we have a very simple formula for the determinant
of any matrix A:

detA = �ijkA1iA2jA3k : (8.24)

This is very easily veri�ed, for example, by simply expanding it. Therefore,

detry = �ijk
@y1
@xi

@y2
@xj

@y3
@xk

: (8.25)

Let us hold this for a moment. Notice that

@

@xi

 
�ijky1

@y2
@xj

@y3
@xk

!
= �ijk

@y1
@xi

@y2
@xj

@y3
@xk

+ �ijky1
@2y2
@xi@xj

@y3
@xk

+ �ijky1
@y2
@xj

@2y3
@xi@xk

: (8.26)

We claim that the last two terms are zero. Let us consider the second term. Notice that inter-
changing the i and j changes the sign of �ijk but leaves @2y2

@xi@xj
unchanged (because of the equality

of second derivatives). Therefore, when we sum over all i and j this term reduces to zero. To see
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this, consider the k = 3 term: summing over all i and j and writing only the non-zero terms, we
obtain

�ij3y1
@2y2
@xi@xj

@y3
@x3

= �123y1
@2y2
@x1@x2

@y3
@x3

+ �213y1
@2y2
@x2@x1

@y3
@x3

= �123y1
@2y2
@x1@x2

@y3
@x3

� �123y1
@2y2
@x1@x2

@y3
@x3

= 0:

(8.27)

The terms for k = 1; 2 are similarly zero, and therefore the second term in Eq. (8.26) is zero. We
use a similar argument for the third term. Therefore, comparing Eq. (8.26) and Eq. (8.25), we see
that

detry =
@

@xi

 
�ijky1

@y2
@xj

@y3
@xk

!
: (8.28)

This is exactly the same as Eq. (8.19) if we de�ne the vector-valued function fy using its components
fyi :

fyi = �ijky1
@y2
@xj

@y3
@xk

i = 1; 2; 3: (8.29)

Let us now turn to the remaining condition, Eq. (8.3)2. Using the permutation symbol �ijk , the
summation convention and the formula for the cofactor of a matrix, we have

(cof ry)ij = 1

2
�ikl�jpr

@yk
@xp

@yl
@xr

: (8.30)

Therefore, it is possible to verify as before that

(cof ry)ij = @

@xp

�
1

2
�ikl�jpryk

@yl
@xr

�
(8.31)

so that the cofactor of the gradient is the divergence of some third-order tensor �eld. Therefore
using the divergence theorem, we can conclude that the cofactor of the deformation gradient is a
null-lagrangean and its integral depends only on the boundary values:Z



cof ryndV =

Z


cof FdV = (cof F)(Vol. 
): (8.32)

On the other hand, we can evaluate this integral using the knowledge of the gradients as in Eq.
(8.16) Z



cof ryndV =

MX
m=1

(cof Fm)(Vol. 

n
m) +

Z

n
inter

cof rydV: (8.33)

Comparing these two, we obtain

(Vol. 
)(cof F) =
MX

m=1

(Vol. 
n
m)(cof Fm) +

Z

n
inter

cof rydV: (8.34)

Dividing this relation by (Vol. 
) and taking the limit as n!1, we obtain the desired result, Eq.
(8.3)2.



69

Finally, let us look at Eq. (8.4). By assumption, detF1 = detF2 = : : : = detFM 6= 0. We use
this in Eq. (8.3)3 to conclude that detF = detF1 6= 0. Therefore, we can use the formula for the
cofactor in Eq. (2.11) to rewrite Eq. (8.3)2 as

(detF)F�T =
MX
m=1

�
�m(detFm)F

�T
m

�
= (detF1)

MX
m=1

�mF
�T
m : (8.35)

However, detF = detF1 and we obtain Eq. (8.4).

8.2 Young Measure and Generalizations

In the previous section, we looked at a very important result in the case of microstructures that
satisfy homogeneous boundary condition. However, not all microstructures satisfy such boundary
conditions { see for example the austenite-martensite interface or the wedge-like microstructure.
Therefore, let us study some properties of some more general microstructures.

Consider any weakly convergent sequence of deformations fyng. It has the �ve properties listed
in Sec. 6.4. In particular, the gradients converge in some average sense. In fact, if we look in a small
region around any point, we �nd a very de�nite statistical distribution of the gradients as n! 1
[83]. For example, consider the �ne twins we studied in Sec. 6.3. If we pick any point and look at
a small region near it, we �nd that we have a probability � of �nding A and a probability (1� �)
of �nding B as n becomes large. Or consider for example, the wedge-like microstructure shown in
Fig. 7.8. Here, the distribution of the gradients depend on the point that we pick. If we pick the
point outside the wedge, we have a probability 1 of �nding the gradient I; if we pick the point in
the left side of the wedge, we have a probability �1 of �nding the gradient A and (1��1) of �nding
the gradient B; and if we pick the point on the right side of the wedge, we have a probability �2 of
�nding the gradient C and a probability of (1� �2) of �nding the gradient D.

TheYoung measure �x is the probability measure that describes this distribution of gradients in a
small region around the point x [83, 84, 85]. It is very important to emphasize one point. The Young
measure describes only those distributions that can be obtained from a weakly converging sequence.
For example, in the �ne twins in Sec. 6.3, if A;B do not satisfy the compatibility condition, that
sequence would not be weakly converging, and we would not obtain a Young measure with A and
B. Therefore, the Young measure has buried within itself all information concerning compatibility
or coherence. Therefore, it is a very convenient and useful accounting device.

We can describe the di�erence between classical deformations and microstructure as follows.
In a classical deformation, we have only one matrix as the value of the gradient at any point.
In contrast, the value of the gradient is not a single matrix in a microstructure; instead it is a
probability distribution. Further, in a coherent microstructure, this probability distribution is
described by a Young measure.

We conclude with a generalization of the average compatibility conditions or minors relations.
Consider some weakly convergent sequence fyng whose limiting deformation is y. Suppose the
Young measure at the point x consists ofM matrices F1;F2; : : : ;FM with probability �1; �2; : : : ; �M
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Figure 9.1: The shape-memory e�ect.

respectively. Then,

1: ry(x) =
MX

m=1

�mFm

2: cof ry(x) =
MX
m=1

�m(cof Fm)

3: detry(x) =
MX

m=1

�m(detFm):

(8.36)

Thus, these average compatibility conditions hold not only for the entire body, but in every small
region of the body.

9 The Shape-Memory E�ect

Shape-memory behavior is the ability of certain materials to recover, on heating, apparently plastic
deformation sustained below a critical temperature. Below the critical temperature, the alloy is
extremely malleable - undergoing apparently plastic deformations with strains as large as 10%
under very small forces. It is therefore possible to easily deform a piece of shape-memory material
into a variety of new shapes. However, all the strain is recovered when it is heated to above the
critical temperature. Cooling from above to below the critical temperature does not cause any
macroscopic shape change and the cycle can be repeated. This is shown schematically in Fig. 9.1.
Intensive experimental and crystallographic investigation during the 1960s and the 70s revealed
that the heart of the e�ect lies in the reversible or \thermoelastic" martensitic transformation
that these crystalline solids undergo. The critical temperature of the shape-memory e�ect is the
transformation temperature.

Consider a single crystal specimen of a given shape in Fig. 9.1a. It is in the austenite phase. On
cooling, the austenite transforms to the martensite. However, the variants of martensite arrange
themselves in such a manner that there is no macroscopic change in shape (Fig. 9.1b). This is
known as self-accommodation. When loads are applied to the martensite, it deforms by converting
one variant to another and forming a new microstructure (Fig. 9.1c). Consequently, the resulting
deformation appears macroscopically plastic: there is no restoring force since all the variants are
energetically equivalent. But in fact, this deformation is recoverable: heating the specimen above
the transformation temperature turns each variant of martensite back to the unique variant of
austenite and the specimen springs back to its original shape.
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Let us make a few observations. First, notice that deformation below the transformation tem-
perature requires multiple variants of martensite while recoverability requires a single variant of
austenite. As we brie
y discussed in Sec. 4.3 this in turn requires the point group of the martensite
to be a subgroup of that of the austenite. If this condition is not true, then we can expect only
imperfect shape-memory e�ect as in some ferrous alloys [38]. Second, self-accommodation is a very
special property of shape-memory alloys. We discuss it at length in Sec. 9.1. Third, notice that only
certain strains can be recovered: those that can be achieved by the rearrangement of martensite
variants. Larger strains would introduce stresses leading to lattice defects and nonrecoverability.
We will see that the recoverable strains depend critically on the type of loading. We discuss recov-
erable strains under load control in Sec. 9.2 and under displacement control in Sec. 9.3. As before,
we con�ne the discussion in this section to single crystals.

9.1 Self-accommodation

In self-accommodation, the variants of martensite in a shape-memory material arrange themselves
in such a microstructure that there is no macroscopic change in shape during the transformation
from austenite to the martensite. Therefore, though there is a deformation at the lattice and
microstructural scale due to the transformation, the variants \accommodate each others strains"
so that there is no change in shape at the macroscopic level. A self-accommodating microstructure
is a coherent arrangement of martensitic variants occupying a region whose boundary su�ers no
displacement with respect to the austenite. Thus, it is possible to embed a self-accommodating
microstructure in a sea of austenite in a coherent manner without introducing macroscopic stresses
(see Tan and Xu [71] for a striking optical micrographs of such islands of martensite surrounded
by the austenite in CuAlNi). A material that can form a self-accommodating microstructure is
called a self-accommodating material. Wayman and others have emphasized the importance of
self-accommodation to the shape-memory e�ect [77]. They argue that self-accommodation is not
only an inherent part of the shape-memory phenomenon, but it plays a crucial role in making
the transformation reversible or thermoelastic. For example, self-accommodation is important for
the easy nucleation of the martensite during cooling. Any nucleus of martensite that forms in
the interior of the specimen is completely surrounded by the austenite. Only self-accommodating
materials can do this in a coherent and stress-free manner. Thus, internal nucleation is likely only
in self-accommodating materials.

Studying common shape-memory alloys using the crystallographic theory of martensite, Tas, De-
laey and Deruyterre [86], Saburi and Wayman [77] and others have proposed certain microstructures
as self-accommodating. The central idea in both their analysis is that of a \self-accommodating
plate group" where four sets of �ne-twins participate in a diamond-like microstructure shown in
Fig. 9.2a. If we analyze this microstructure as we did the wedge-like microstructure in Sec. 7.3,
we �nd that a material can not form such a microstructure without a loss of coherence. More-
over, their analysis can not determine which materials can and which materials can not form a
self-accommodating microstructure. It is clear that not every material that undergoes martensitic
transformation is self-accommodating. For example, consider a material where the volume of the
martensite is smaller than that of the austenite. In this material, is not possible to embed any
microstructure of martensite in a sea of austenite in a coherent manner without introducing macro-
scopic stresses. Therefore, this material is clearly not self-accommodating. The central issue in this
subsection is to �nd necessary and su�cient conditions on the lattice parameters of a material in
order that it be self-accommodating following the analysis in Bhattacharya [50].

The main result is shown in Table 9.1. A surprising consequence of our results is that even
though it is the variants of martensite that participate in the self-accommodating microstructure,
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Figure 9.2: Self-accommodating microstructures. (a) The commonly discussed diamond microstruc-
ture. Unfortunately, this is not coherent. (b) Schematic representation of the microstructure con-
structed to prove the result in Table 9.1.

the conditions for self-accommodation depend only on the symmetry of the austenite. As ex-
plained above, volume preservation during transformation is necessary for self-accommodation. It
turns out that volume preservation during transformation is also su�cient for self-accommodation
if the symmetry of the austenite is cubic. In fact, in the case of cubic austenite, it is always possible
to construct a microstructure which is a pure dilatation with respect to the austenite. The amount
of dilatation, of course, depends on the transformation volume change. However, if the symmetry
of the austenite is not cubic, the lattice parameters of the material have to satisfy additional re-
strictions which are extremely stringent and \non-generic". For example consider the tetragonal to
orthorhombic transformation. Self-accommodation requires that 
 de�ned in Table 4.2 be exactly
equal to one (i.e., there is no stretch along the \c-axis" of the tetragonal lattice during the trans-
formation) in addition to the condition of no volume change during transformation. In summary,
materials with cubic austenite have to satisfy a rather easy constraint while materials with non-
cubic austenite have to satisfy very restrictive conditions in order to be self-accommodating. This
may be the reason why every shape-memory material that I have found in the literature has cubic
austenite and undergoes very small volume change during transformation. In particular consider
alloys that undergo the cubic to tetragonal transformation. The transformation is volume preserv-
ing if and only the parameters �; � de�ned in Table 4.1 satisfy the relation �2� = 1. This relation
is plotted in Fig. 7.8, along with the measured lattice parameters of some shape-memory alloys.
See [50] for more comparison with experimental observations. We now examine the proof of this
result for a couple of cases.

9.1.1 Cubic Austenite

Any material with a cubic austenite can form a self-accommodating microstructure if and only if
detU1 = 1 according to Table 9.1. We brie
y sketch a proof of this result.

First consider a material that can form a self-accommodating microstructure. Suppose this
microstructure involves the matrices F1;F2; : : : ;FM in the volume fraction �1; �2; : : :�M . Since
this is a microstructure of martensite, each of the matrices F1;F2; : : : ;FM belongs to the martensite
wells M and consequently is of the form QUI . Therefore, for each m,

detFm = det(QUI) = (detQ)(detUI) = detUI = detU1: (9.1)
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Table 9.1: Necessary and Su�cient Conditions for Self-accommodation

Symmetry of the austenite Necessary and su�cient conditions for self-accommodation

Cubic detU1 = 1

Tetragonal (1) detU1 = 1,

(2)
1

D11D22 �D2
12

� 1 � D33

Orthorhombic (1) detU1 = 1,

(2)
1

D11D22 �D2
12

� 1 � D33,

(3)
1

D22D33 �D2
23

� 1 � D11,

(4)
1

D11D33 �D2
13

� 1 � D22,

Monoclinic The two-well problem (see Sec. 9.3)

U1 is the transformation matrix. D = U2
1 and Dij are the components of D. In the case

of the tetragonal austenite, ê3 is the \c-axis" of the tetragonal lattice.

Further, they satisfy identity boundary conditions. Therefore, we substitute F = I in the average
compatibility condition, Eq. (8.3)3, and use Eq. (9.1). This gives us

1 = det I =
MX

m=1

�m detFm = (detU1)

 
MX
m=1

�m

!
= detU1: (9.2)

Therefore, any material with a cubic austenite that can form a self-accommodating microstructure
automatically satis�es the condition detU1 = 1 as required by Table 9.1.

Conversely, we need to show that any material with a cubic austenite that satis�es detU1 = 1
can form a self-accommodating microstructure. It is possible to do this by constructing a mi-
crostructure with multiple levels of twins within twins [50]. We omit the calculations here, but
show the schematic idea of the construction in Fig. 9.2b. We use this microstructure purely for
the purposes of a mathematical proof. There is no reason to believe that this is the only self-
accommodating microstructure, or that this is in any way special from the point of view of the
material. Experimental observations suggest a variety of self-accommodating microstructures.
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9.1.2 Tetragonal Austenite

Consider a material with tetragonal austenite. Let ê3 be the axis of 4-fold symmetry or the \c-
axis" of the tetragonal austenite lattice. Therefore, for each rotation R in the point group of the
austenite Pa,

Rê3 = �ê3: (9.3)

According to Table 9.1, this material can form a self-accommodating microstructure if and only if

detU1 = 1 and
1

D11D22 �D2
12

� 1 � D33: (9.4)

Above, we use the notation D = U2
1 and Dij are the components of D.

We now show that if a material is self-accommodating, then Eq. (9.4) holds. The �rst part,
detU1 = 1, follows from the average compatibility condition, Eq. (8.3)3, as in the cubic case. There-
fore, we con�ne ourselves to the inequalities in Eq. (9.4)2. Let the self-accommodating microstruc-
ture involve the matrices F1;F2; : : : ;FM in the volume fraction �1; �2; : : :�M . Since we are looking
for a self-accommodating microstructure of martensite, each of the matrices F1;F2; : : : ;FM be-
longs to the martensite wellsM and consequently is of the form QUI . Further, this microstructure
satis�es identity boundary condition. Therefore, we can write the average compatibility condition,
Eq. (8.3)1, as

I =
MX

m=1

�mFm; and hence ê3 =
MX
m=1

�mFmê3: (9.5)

Therefore,

1 = jê3j2 =
 

MX
m=1

�mFmê3

!
�
 

MX
m=1

�mFmê3

!
: (9.6)

Now notice that the following inequality is true for any vectors a1; a2; : : :aM ,�����
MX
m=1

�mam

�����
2

=

 
MX

m=1

�mam

!
�
 

MX
m=1

�mam

!
�

MX
m=1

�mjamj2: (9.7)

Therefore,

1 �
MX

m=1

�mjFmê3j2: (9.8)

However, for any m,

jFmê3j2 = ê3 � (FT
mFmê3) = ê3 � (U2

I ê3) = ê3 � (RTU2
1Rê3) = (Rê3) � (U2

1Rê3) = D33: (9.9)

Above we have used the fact that UI = RTU1R for some R 2 Pa and Eq. (9.3). Substituting this
in Eq. (9.8), we obtain

1 �
MX
m=1

�mD33 = D33 (9.10)

which is the right side of Eq. (9.4)2. We prove the other part of Eq. (9.4)2 using a very similar
argument. First notice that detFm = detU1, so we can use Eq. (8.4). Since we satisfy identity
boundary conditions,

I = I�T =
MX
m=1

�mF
�T
m ; so that ê3 =

MX
m=1

�mF
�T
m ê3 and 1 �

MX
m=1

�mê3 � (F�1m F�Tm ê3):

(9.11)
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However,
ê3 � (F�1m F�Tm ê3) = ê3 � (U�2I ê3) = ê3 � (U�21 ê3) = (D�1)33: (9.12)

But,

(D�1)33 =
1

detD
(D11D22 �D2

12) =
D11D22 �D2

12

(detU1)2
= D11D22 �D2

12: (9.13)

Putting these together,

1 � D11D22 �D2
12 or

1

D11D22 �D2
12

� 1 (9.14)

which is the left half of the inequality in Eq. (9.4)2. Thus, we conclude that any self-accommodating
material with a tetragonal austenite satis�es Eq. (9.4). The converse of the result can once again
be demonstrated using a construction shown schematically in Fig. 9.2b [50].

9.2 Recoverable Strains under Load Control

Consider a single crystal that has just been transformed from the austenite to the martensite (Fig.
9.1b). Therefore, it is at a temperature below the transformation temperature and is in the self-
accommodated state. We are interested in �nding the maximum deformation that the single crystal
can undergo by rearranging its variants. We will see that this depends critically on the type of load
{ load control or displacement control { and on the orientation.

In this section we assume the crystal is deformed under load control (or dead loads). In other
words, we assume that t, the applied force per unit reference area on the boundary of the body, is
held constant as the specimen deforms. Let us further assume that the applied load corresponds to
a constant matrix S: i.e., t = Sn̂ where n̂ is the unit outward normal in the reference con�guration.
We claim following James [87] that the state of crystal subjected to this load is described by the
deformation y that minimizes the energyZ



('(ry)� S � ry)dV: (9.15)

We can interpret the integrand as a generalization of the Gibbs free energy for multiaxial loading.
Notice that the integrand depends only on ry and does not explicitly depend on x. Therefore,
we just have to �nd the matrix F that minimizes the integrand '(F) � S � F. The minimizing
deformation is then given by the homogeneous deformation y = Fx.

We are interested in deformations that involve only the martensite wells. Therefore, we assume
that the applied load S is small enough that the minimizing F lies close to the wells. In fact, as
an approximation, let us assume that the minimizing F lies on the martensite wells M. Therefore,
F = QUI for some rotation Q and for some I = 1; : : : ; N and '(F) = 0. Putting all of this
together, we can �nd the variant that is formed by applying the load S by solving the following
problem:

max
I=1;2;:::N

 
max

all rotations Q
S � (QUI)

!
: (9.16)

9.2.1 Uniaxial Loading

Consider a single crystal subjected to an uniaxial tension � in the direction ê. In this case, we
show the formula

Maximum recoverable strain = max
I=1;2;:::N

��q
ê �U2

I ê

�
� 1

�
: (9.17)
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Saburi and Nenno [3] have calculated the maximum recoverable strain for various alloys and found
excellent agreement with experimental results.

We now derive the formula Eq. (9.17) from Eq. (9.16). First let us construct the stress matrix
S. Clearly, the \ê� ê" component is equal to � while the rest are equal to zero, or

S = �ê
 ê: (9.18)

Therefore, the problem Eq. (9.16) reduces to

max
I=1;2;:::N

 
max

all rotations Q
�e � (QUI)ê

!
= max

I=1;2;:::N

 
max

all rotations Q
�QTe �UI ê

!
: (9.19)

Let us �x I and look at the problem of maximizing over all rotations inside the parenthesis. Clearly,
the maximizing rotation is the one that makesQT ê parallel toUI ê orQ

T ê = �UI ê for some positive

�. Since QT is a rotation, jQT êj = jêj. Therefore, 1 = jQT êj2 = �2jUI êj2 or � =
q
1=(ê �U2

I ê).
Therefore, the maximal rotation satis�es

QT ê =

 s
1

(ê �U2
I ê)

!
UI ê: (9.20)

Substituting this back to Eq. (9.19), we are left to solve

max
I=1;2;:::N

q
(ê �U2

I ê) (9.21)

to �nd the maximal or optimal variant I . Thus we obtain the optimal variant and rotation. To
obtain the maximum recoverable strain in the direction ê for the crystal, we simply calculate the
strain associated with this optimal variant and rotation. Substituting the optimal F = QUI in Eq.
(2.23), we obtain

Maximum recoverable strain =
q
ê �U2

I ê� 1 (9.22)

where this is evaluated at the optimal I . However, using Eq. (9.21), we see that this is exactly
equal to the Eq. (9.17).

9.2.2 Biaxial Loading

Consider a single crystal in the shape of a square plate subjected to the biaxial tension shown in
Fig. 9.3a. Chu and James [53] constructed a rather sophisticated loading device to apply such a
biaxial tension. The key feature of the device is that the load remains constant even as the specimen
su�ers large deformations including shear. In this situation, the applied stress

S = �1ê1 
 ê1 + �2ê2 
 ê2: (9.23)

Arguing as above, it is possible to show [53] that the variant that is induced for a given load (�1; �2)
can be obtained by studying the following problem:

max
I=1;2;:::N

�p

1 +

p

2 +

p

3 where f
1; 
2; 
3g are the eigenvalues of the matrix SU2

IS
	
: (9.24)

The results depend on the applied loads (�1; �2) as well as the orientation of the plate. A typical
result is shown in Fig. 9.3b. For a given plate, di�erent variants { say I and J { are induced for
di�erent applied loads (�1; �2). The exchange of stability takes place along a line that goes through
the origin (�1; �2) = (0; 0). Chu and James [53] studied CuAlNi with various loading programs in
specimens with many di�erent orientation and found good agreement with the predictions of Eq.
(9.24).
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Figure 9.3: (a) A single crystal subjected to biaxial tension. (b) The typical result { one variant is
stable for certain values of the applied load while another is stable for others.

9.3 Recoverable Strains under Displacement Control

Consider a single crystal that has just been transformed from the austenite to the martensite. There-
fore, it is at a temperature below the transformation temperature and is in the self-accommodating
state. Let us subject this crystal to the boundary condition y = Fx for some matrix F. We
say that the deformation F is recoverable if the material can accommodate it by making some
microstructure of martensite. We are interested in �nding the set of all recoverable deformations.
We call this the set S. Therefore,

S =

(
F :

there is a microstructure of martensite that
satis�es the boundary condition y = Fx on @


)
: (9.25)

This set S characterizes all the possible deformations of the crystal that involve the martensite
variants. Therefore, if we know this set, we can immediately say whether a given boundary condition
is recoverable or not. Further, we will see that this set will play a crucial role in �nding the
recoverable strains in polycrystals even under dead loads.

Therefore, we ask the following question. Given the transformation matrices U1;U2; : : : ;UN ,
calculate the set S. Unfortunately, this is largely an open question. We do not know this set,
except in a very special situation. This is the \two-well problem" studied by Ball and James [21].
However, it is possible to calculate this set in many important situations in an approximate theory.
We do not describe it here, but refer the interested reader to Bhattacharya [52] and Bhattacharya
and Kohn [88].

We now study a version of the two-well problem of Ball and James [21]. Here, we calculate
the set S when there are only two correspondence variants of martensite (i.e., when N = 2) and
the variants are compatible. The tetragonal to orthorhombic and the orthorhombic to monoclinic
transformations satisfy these conditions. We discuss the results in the case of tetragonal to or-
thorhombic transformation where the transformation matrices are given in Table 4.2. We now
show that the F belongs to the set S if and only if the matrix D = FTF is of the form

D =

0
B@ D11 D12 0
D12 D22 0
0 0 
2

1
CA (9.26)
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Figure 9.4: The shaded region shows all the boundary conditions that can be satis�ed by mi-
crostructures of the two variants of martensite in a tetragonal to orthorhombic transformation.

and D11; D12; D22 satisfy the following conditions

D11D22 �D2
12 = �2�2

D11 +D22 + 2D12 � �2 + 
2

D11 +D22 � 2D12 � �2 + 
2

: (9.27)

The numbers D11; D12; D22 that satisfy these conditions lie on a portion of a surface in D11 �
D12 � D22 space. A projection of this set is shown in Fig. 9.4. Notice that Eq. (9.27)1 describes
some in�nite surface in this space while the inequalities in Eq. (9.27)2;3 place some restrictions
on it. Consequently, this set looks like an orange peel or half an \American football". We have
shown a 
attened version of this set in Fig. 9.4 by projecting it onto the (D11�D22)�D12 plane.
The shaded region describes the set of all deformations that can obtained using microstructures of
martensite. The left-most corner corresponds to the pure variant U1 while the right-most corner
corresponds to the pure variant U2.

Let us now try to prove this result. We begin by showing that any matrix F in S satis�es the
conditions stated above. We do so by using the average compatibility conditions derived in Sec. 8.1.
Let the microstructure that meets the boundary condition F involve the matrices F1;F2; : : : ;FM

in the volume fraction �1; �2; : : :�M . Since this is a microstructure of martensite, each matrix
Fm = QmUI ; I = 1 or 2 for some rotation matrix Qm. We begin by showing that D is of the form
Eq. (9.26). We obtain from Eq. (8.3)1 that

Fê3 =
MX
m=1

(�mFmê3) (9.28)

However, each matrix Fm = QmUI and U1ê3 = U2ê3 = 
ê3. Therefore,

Fê3 = 
Mê3 where M =
MX

m=1

�mQm: (9.29)
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Let us hold this information for a while. Notice that detFm = detU1 for each m and hence we
can use Eq. (8.4) to conclude that

F�T ê3 =
MX

m=1

�mF
�T
m ê3: (9.30)

However,

F�Tm ê3 = (QmUI)
�T ê3 = QmU

�1
I ê3 =

1



Qmê3: (9.31)

Therefore,

F�T ê3 =
1



Mê3 (9.32)

where the matrix M is de�ned earlier in Eq. (9.29). Putting Eq. (9.29) and Eq. (9.32) together, we
conclude that

Dê3 = FTFê3 = FT (
Mê3) = FT (
2F�T ê1) = 
2ê3: (9.33)

This implies that D33 = 
2; D13 = D23 = 0 which is the same as Eq. (9.26).
We now turn to Eq. (9.27)1. Since detFm = U1 = ��
 for each m, it follows from Eq. (8.3)3

that
detF = ��
 so that detD = �2�2
2: (9.34)

However, taking the determinant of D in Eq. (9.26),

detD = 
2(D11D22 �D2
12) (9.35)

and we obtain Eq. (9.27)1.
We �nally turn to Eq. (9.27)2 and Eq. (9.27)3. For any vector ê we obtain from Eq. (8.3)1 that

Fê =
MX

m=1

(�mFmê); and hence, ê �Dê = jFêj2 �
MX

m=1

(�mjFmêj2) = max
I=1;2

(ê �U2
I ê) (9.36)

as in Sec. 9.1. We obtain Eq. (9.27)2 by substituting ê =
1p
2
(ê1+ê2) and Eq. (9.27)3 by substituting

ê = 1p
2
(ê1 � ê2). Therefore, we have shown that every matrix F 2 S satis�es Eq. (9.26) and Eq.

(9.27).
We now show the converse. In other words, we show that every matrix F that satis�es Eq.

(9.26) and Eq. (9.27) is automatically in S. In other words, if F satis�es these conditions, we can
�nd a microstructure of martensite that satis�es homogeneous boundary conditions y = Fx. We
do so by constructing twins within twins. Here, we present the ideas behind the calculation, but
omit the details.

According to Sec. 5.6, there are two solutions to the twinning equation QU2 � U1 = a 
 n̂.
Let us call these solutions fQ1; a1; n̂1g and fQ2; a2; n̂2g. Let us form �ne twins between the two
variants using the �rst solution. This has average deformation gradient equal to

F+
� = �(Q1U2) + (1� �)U1 = U1 + �a1 
 n̂1: (9.37)

As � goes from 0 to 1, the point corresponding to F+
� in Fig. 9.4, travels from the left corner to

the right corner using the upper boundary. Similarly, if we construct �ne twins using the second
solution, the average deformation

F�� = U1 + �a2 
 n̂2: (9.38)
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travels from the left to the right corner using the lower boundary. Further, it is possible to show
that for each �, there is a solution to the equation

Q�F
�
� � F+

� = a� 
 n̂�: (9.39)

Therefore we can form a twin-within-twin microstructure using alternating bands of F+
� and F�� in

the volume fraction �. This has average deformation gradient

F(�;�) = �Q�F
�
� + (1� �)F+

� : (9.40)

As � goes from 0 to 1, the point corresponding to F(�;�) in Fig. 9.4, travels from the point corre-

sponding to F+
� on the upper boundary to the point corresponding to F�� on the lower boundary.

Therefore, by varying � and � between 0 and 1, we can cover the entire shaded region in Fig. 9.4.

10 Polycrystals

So far, we have studied the martensitic transformation and the shape-memory e�ect in single
crystals. However, typical commercial specimens are polycrystalline. Experimental observations
suggest that there can be signi�cant di�erence in the shape-memory e�ect between single and
polycrystals. Some materials have a large recoverable strain as single crystals, but little or none
as polycrystals; while others have a large recoverable strain even as polycrystals. Here are three
examples.

1. Ni-37Al (at.%) Transformation: Cubic to tetragonal. Enami et al. [90] report that single
crystals can recover tensile strains ranging from 0 to 13% depending on orientation. However,
polycrystals are greatly susceptible to intergranular fracture in tension, while in compression
Kim and Wayman [91] report that polycrystals can recover only about 0.2% strains.

2. Cu-14Al-4Ni (wt.%) Transformation: Cubic to orthorhombic or monoclinic-II. Eucken and
Hirsch [92] report that polycrystalline ribbons with uncontrolled texture recover only about
2.5% tensile strain while specially textured polycrystalline ribbons fully recover about 6.5%
tensile strain. Single crystals recover tensile strains ranging from 2 to 9% depending on
orientation.

3. Ti-50.6Ni (at.%) Transformation: Cubic to monoclinic-I. This material is very widely used
commercially. Ling and Kaplow [93, 94] report that drawn polycrystalline wires fully recover
from 4 to 8% strain depending on deformation mode, processing and manufacturer. Similar
observations have been published by others [95, 96, 97, 98]. Single crystals recover tensile
strains ranging from 3 to 10% depending on orientation [98, 99].

Bhattacharya and Kohn [88] studied this problem using an approximate theory. In particular,
they estimated the recoverable strains in polycrystals. They found that the set of recoverable
deformations in a polycrystal depends not only on the transformation strain and the texture of the
polycrystal, but critically on the change of symmetry during the transformation. Brie
y, greater
the change in symmetry during the underlying transformation, greater the recoverable strains.
Notice that this is consistent with the examples above: NiAl undergoes a cubic to tetragonal
transformation, CuAlNi undergoes a cubic to orthorhombic or monoclinic transformation and NiTi
undergoes a cubic to monoclinic transformation. We now give a brief overview of their analysis by
extending the theory we have developed to polycrystals.
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P(x)

Reference  single
crystal

x

Figure 10.1: An orientation matrix P(x) describes the texture of a typical polycrystal.

Consider a polycrystal in the austenite state at the transformation temperature. Let us choose
this as the reference con�guration. We describe the texture of this polycrystal using an orientation
function P(x): the orientation of the grain at the point x is given by a rotation P(x) relative to a
reference crystal { see Fig. 10.1.

Now subject this polycrystal to the deformation y(x) and a temperature �. The total energy
stored in this polycrystal is given by Z



'(ry(x)P(x); �)dV: (10.1)

Above, ' is the stored energy density of the reference single crystal with all the properties described
in Sec. 4. Notice that the energy density and consequently the energy wells depend on the position
x in the polycrystal through the orientation matrix P(x):

A(x) = APT (x) fF : F = Q for some rotation Qg ;
M1(x) =M1P

T (x) = fF : F = QU1(x) for some rotation Qg ;
M2(x) =M2P

T (x) fF : F = QU2(x) for some rotation Qg ;
...

MN(x) =MNP
T (x) fF : F = QUN (x) for some rotation Qg

(10.2)

where the transformation matrix of the Ith variant of martensite is given by

UI(x) = P(x)UIP
T (x) (10.3)

at the point x. Notice that the austenite well remains unchanged because of frame-indi�erence.
The state of a polycrystal when subjected to some boundary condition is described by the

deformation that minimizes the total energy in Eq. (10.1). This leads to the formation of mi-
crostructures as in the case of single crystals. Each grain forms a microstructure consistent with
its own energy wells. At the same time, it is constrained by its neighbors { unless the deformations
in the neighboring grains match across the grain boundary, the polycrystal will fall apart. Thus,
the microstructure in a given grain in a polycrystal can be very di�erent from the microstructure
in a single crystal of the same orientation.

Consider the shape-memory e�ect in polycrystals. First notice that there is no di�erence
between single crystals and polycrystals as far as self-accommodation is concerned. In a self-
accommodating material, each grain can undergo the transformation without deformation and
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hence the polycrystal can undergo the transformation without deformation. Furthermore, there is
no mismatch between the grains. This in turn implies that self-accommodation prevents residual
stresses in a polycrystalline material. This rules out the possibility of using texture as a means of
creating a \two-way shape-memory e�ect".

On the other hand, recoverable strains can be signi�cantly di�erent. Consider a self-accommodated
polycrystal of martensite and deform it. Each grain tries to accommodate the deformation by form-
ing its own microstructure. However, it is constrained by its neighbors. Therefore, the situation is
much more complicated than in the single crystals. For example, consider uniaxial tension under
load control as in Sec. 9.2.1. In a single crystal, we obtained the recoverable strain by simply �nding
the variant with the maximal extension in the direction of loading. So in a polycrystal, we could
�nd the strain of the optimal variant in each grain and take the average over all grains. However,
this procedure leads to a wrong answer. In particular, it overestimates the actual recoverable strain.
Consider two neighboring grains. Assume that each forms its optimal variant. Unless the orien-
tations of the grains are related in a very special way, there will be a mismatch across the grain
boundary. In order to prevent this mismatch, the grains can not form their optimal variants. See
Miyazaki et al [100, 101] for experimental observations of this fact in carefully prepared bicrystals.
Therefore, in a polycrystal, we have to �nd the optimal microstructure that respects the constraints
between the grains. This requires a more general approach similar to Sec. 9.2.2.

Recall that a single crystal has a set of recoverable deformations S de�ned in Eq. (9.25). It is
exactly those deformations that a single crystal can accommodate by making a microstructure of
martensite. Similarly, let us de�ne a set of recoverable deformations of a polycrystal P as the set
of all possible coherent deformations that can be accommodated in each grain by a microstructure
of martensite. Each grain in the polycrystal has its own set of recoverable deformations S(x).
We can obtain this from the set S through the orientation matrix P(x); i.e., S(x) = SPT (x).
Therefore, a recoverable deformation in a polycrystal is coherent and satis�es ry(x) 2 S(x) for
each x. Therefore, we obtain

P =

(
F :

there is a coherent deformation y which is recoverable in each grain
and satis�es the boundary condition y = Fx on @


)

=

(
F :

there is a coherent deformation y such that ry(x) 2 S(x)
and it satis�es the boundary condition y = Fx on @


)
:

(10.4)

There is a very easy estimate one can obtain. This is the so-called Taylor bound T . Here, we
assume that each grain undergoes the same macroscopic deformation. Therefore, a deformation is
recoverable according to the Taylor bound if it is recoverable in each grain. Therefore,

T =
\
x2


S(x) = fF : FP(x) 2 S for each x 2 
g : (10.5)

The physical meaning of the Taylor bound is clear. It describes the strains that can be accom-
modated without making use of any cooperative e�ects between the grains. Therefore, the Taylor
bound underestimates the actual recoverable strains.

Recall from Sec. 9.3 that we were able to calculate the set S only for very special transfor-
mations, but were unable to do so for the most interesting cases. Therefore, we are unable to
calculate the set P or even the set T . Instead, Bhattacharya and Kohn [88] used an approximate
geometrically linear theory to calculate the set T . They also argued [102] that the Taylor bound
is a surprisingly good indicator of the actual set of recoverable deformations. Based on this they
concluded the following. In a cubic to tetragonal or a cubic to trigonal transformation, the range
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of deformations that each grain can undergo by rearranging variants is too small to allow cooper-
ative deformation between the grains. Hence, the recoverable deformations have negligible strain
compared to the self-accommodated state and hence, they have little or no recoverable strain. In
contrast, in alloys that undergo cubic to monoclinic transformation, the large change in symmetry
provides a great range of deformations by rearranging variants, and allowing cooperative deforma-
tion between strains. Hence, we expect signi�cant recoverable strains. Alloys that undergo cubic
to orthorhombic transformation lie somewhere in between. See [88] for further details and also a
detailed comparison with experiment.

11 Summary

Let us quickly review some of the main ideas and results.

1. A change in symmetry during transformation causes the material to have a number of variants.
In particular, if the austenite has greater symmetry than the martensite, we have one variant
of austenite and multiple variants of martensite. We can calculate the number of variants
based on the change in symmetry. The transformationmatrix of each variant can be calculated
from the lattice parameters.

2. The energy density of such materials has multiple wells { each well associated with one variant.

3. Energy minimization with a multi-well energy naturally leads to �ne-scale microstructure.
We can calculate various aspects of this microstructure based on the change in symmetry and
lattice parameters.

4. We can represent a coherent microstructure using a (weakly converging) sequence of defor-
mations.

5. We can derive the crystallographic theory of martensite based on energy minimization. Based
on this, we can calculate all the possible austenite-martensite interfaces. However, this pre-
sentation does not require an a priori knowledge of the twinning modes; these as well as the
twinning elements can be calculated from the change in symmetry and the transformation
matrix.

6. The microstructure, and consequently the macroscopic properties, can depend very delicately
on lattice parameters. For example, the wedge-shaped microstructure which is important for
reversibility requires that the lattice parameters satisfy rather strict conditions.

7. Only materials with cubic austenite that undergo a volume preserving transformation will
display the shape-memory e�ect.

8. It is not possible to induce the two-way shape-memory e�ect by making specially textured
polycrystals.

9. The average compatibility conditions are a very useful tool in studying general questions of
microstructure, like self-accommodation.

10. The shape-memory behavior of polycrystals depends not only on the transformation strain and
texture, but critically on the change of symmetry in the underlying transformation. Brie
y,
there is no shape-memory e�ect if the change in symmetry is small (cubic to tetragonal or
trigonal). On the other hand, there is some recoverable strain when the change in symmetry
is large (cubic to orthorhombic or monoclinic).
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11. Shape-memory e�ect in cubic to tetragonal alloys requires very special texture. Even then,
it will have imperfect recoverablity.

12. Materials undergoing a cubic to monoclinic transformation will display the signi�cant shape-
memory e�ect.

13. All these predictions agree with experimental observations.

14. Finally, there are many open problems in this theory. The most important is our inability
to calculate the set of recoverable strains in a single crystal except in a most simple example
using the exact theory.
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