Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression

Nucleic Acids Res. 2012 Jun;40(11):4794-803. doi: 10.1093/nar/gks066. Epub 2012 Feb 9.

Abstract

Chemical inhibitors of histone deacetylase (HDAC) activity are used as experimental tools to induce histone hyperacetylation and deregulate gene transcription, but it is not known whether the inhibition of HDACs plays any part in the normal physiological regulation of transcription. Using both in vitro and in vivo assays, we show that lactate, which accumulates when glycolysis exceeds the cell's aerobic metabolic capacity, is an endogenous HDAC inhibitor, deregulating transcription in an HDAC-dependent manner. Lactate is a relatively weak inhibitor (IC(50) 40 mM) compared to the established inhibitors trichostatin A and butyrate, but the genes deregulated overlap significantly with those affected by low concentrations of the more potent inhibitors. HDAC inhibition causes significant up and downregulation of genes, but genes that are associated with HDAC proteins are more likely to be upregulated and less likely to be downregulated than would be expected. Our results suggest that the primary effect of HDAC inhibition by endogenous short-chain fatty acids like lactate is to promote gene expression at genes associated with HDAC proteins. Therefore, we propose that lactate may be an important transcriptional regulator, linking the metabolic state of the cell to gene transcription.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Anions
  • Butyrates / pharmacology
  • Cell Line
  • Culture Media / chemistry
  • Gene Expression Regulation* / drug effects
  • Histone Deacetylase Inhibitors / pharmacology*
  • Histones / metabolism
  • Humans
  • Lactic Acid / analysis
  • Lactic Acid / pharmacology*

Substances

  • Anions
  • Butyrates
  • Culture Media
  • Histone Deacetylase Inhibitors
  • Histones
  • Lactic Acid