Skip to main content
Log in

On the Interaction of Spiral Density Waves with Stars near the Inner Lindblad Resonance in Galactic Disks

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The interaction of a spiral wave with stars near the inner Lindblad resonance in a galactic disk has been investigated. The dispersion relation describing the behavior of the complex wave number of the spiral wave as a function of the distance to the resonance has been derived within the framework of a purely linear problem and in the leading orders of the epicyclic and WKB approximations. We also have improved the result of Mark (1971) concerning behavior of the amplitude of leading spiral wave near the resonance circle. We have studied the consequences following from the hypothesis that weak nonlinearity in a narrow resonance region changes the standard rule of bypassing the pole in the complex plane, known as the Landau–Lin bypass rule, to taking the corresponding principal value integral. By analogy with hydrodynamics, where such a problem arises when analyzing the resonant interaction of waves with shear flows, we expect that a small, but finite amplitude can lead to a modification of the bypass rule and, as a consequence, to the elimination of the effect of spiral wave absorption at the resonance and its reflection. We have shown that under some assumptions the presumed picture actually takes place, but the detailed situation looks quite unexpected: near the resonance the regions where stars cause wave attenuation alternate with the regions where the wave is amplified. At the same time, there is no wave absorption effect when integrated over the resonance region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Benney and R. E. Bergeron, Studies Appl. Math. 48, 181 (1969).

    Article  Google Scholar 

  2. J. Binney and S. Tremaine, Galactic Dynamics, 2nd ed. (Princeton Univ. Press, NJ, 2008).

    MATH  Google Scholar 

  3. S. M. Churilov and I. G. Shukhman, Atmosph. Ocean. Phys. 31, 535 (1996).

    Google Scholar 

  4. F. Combes and B. G. Elmegreen, Astron. Astrophys. 271, 31 (1993).

    Google Scholar 

  5. G. Contopoulos, Astrophys. J. 160, 113 (1970).

    Article  ADS  Google Scholar 

  6. R. E. Davis, J. Fluid Mech. 36, 337 (1969).

    Article  ADS  Google Scholar 

  7. C. Dobbs and J. Baba, Publications of Astronomical Society of Australia (PASA) 31, 1 (2014).

    Google Scholar 

  8. P. Goldreich and S. Tremaine, Astrophys. J. 243, 1062 (1981).

    Article  ADS  Google Scholar 

  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed. (Academic, New York, 2015).

    Google Scholar 

  10. R. Haberman, Studies Appl.Math. 51, 139 (1972).

    Article  Google Scholar 

  11. A. J. Kalnajs, PhD Thesis (Harvard Univ., 1965).

    Google Scholar 

  12. P. D. Killworth and M. E. McIntyre, J. Fluid Mech. 161, 449 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  13. L. D. Landau, J. Phys. (USSR) 10, 25 (1946); Uspekhi Fizicheskih Nauk 93, 527 (1967).

    Google Scholar 

  14. C. C. Lin and F. Shu, Proc. Natl. Acad. Sci. U.S.A. 55, 229 (1966).

    Article  ADS  Google Scholar 

  15. C. C. Lin, The Theory of Hydrodynamical Stability (Cambridge Univ. Press, New York, 1955).

    Google Scholar 

  16. D. Lynden-Bell and A. J. Kalnajs, Mon. Not. R. Astron. Soc. 157, 1 (1972).

    Article  ADS  Google Scholar 

  17. D. Lynden-Bell and J. P. Ostriker, Mon. Not. R. Astron. Soc. 136, 293 (1967).

    Article  ADS  Google Scholar 

  18. J. W.-K. Mark, Proc. Natl. Acad. Sci. U.S.A. 68, 2095 (1971).

    Article  ADS  Google Scholar 

  19. J.W.-K. Mark, Astrophys. J. 193, 539 (1974).

    Article  ADS  Google Scholar 

  20. S. A. Maslowe, Ann. Rev. Fluid Mech. 18, 405 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Polyachenko, P. Berczik, and A. Just, Mon. Not. R. Astron. Soc. 462, 3727 (2016).

    Article  ADS  Google Scholar 

  22. F. H. Shu, Astrophys. J. 160, 99 (1970).

    Article  ADS  Google Scholar 

  23. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  24. A. Toomre, Structure and Evolution of Normal Galaxies, Ed. by S. M. Fall and D. Lynden-Bell (Cambridge Univ. Press, Cambridge, 1981), p. 111.

  25. A. A. Vlasov, J. Phys. (USSR) 9, 25 (1945).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Polyachenko.

Additional information

Original Russian Text © E.V. Polyachenko, I.G. Shukhman, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 11, pp. 727–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyachenko, E.V., Shukhman, I.G. On the Interaction of Spiral Density Waves with Stars near the Inner Lindblad Resonance in Galactic Disks. Astron. Lett. 44, 664–675 (2018). https://doi.org/10.1134/S1063773718110051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718110051

Keywords

Navigation