Skip to main content
Log in

ORIGIN: metal creation and evolution from the cosmic dawn

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ∼0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm2/s in 10 s in the 5–150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ∼65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balestra, I., Tozzi, P., Ettori, S., Rosati, P., Borgani, S., Mainieri, V., Norman, C.: Evolution in the iron abundance of the ICM. P Th PS 169, 49 (2007)

    Google Scholar 

  2. Bastian, N., Covey, K.R., Meyer, M.R.: A universal stellar initial mass function? A critical look at variations. ARA&A 48, 339 (2010)

    Article  ADS  Google Scholar 

  3. Breeveld, A.A., Curran, P.A., Hoversten, E.A., et al.: Further calibration of the Swift ultraviolet/optical telescope. MNRAS 406, 1687 (2010)

    ADS  Google Scholar 

  4. Branchini, E., Ursino, E., Corsi, A., et al.: Studying the warm hot intergalactic medium with gamma-ray bursts. ApJ 697, 328 (2009)

    Article  ADS  Google Scholar 

  5. Borgani, S., Murante, G., Springel, V., et al.: X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation. MNRAS 348, 1078 (2004)

    Article  ADS  Google Scholar 

  6. Bromm, V., Loeb, A.: GRB cosmology: probing the early universe. AIPC 937, 532 (2007)

    ADS  Google Scholar 

  7. Butler, N.R., Bloom, J.S., Poznanski, D.: The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts. ApJ 711, 495 (2010)

    Article  ADS  Google Scholar 

  8. Bykov, A.M., Paerels, F. B. S., Petrosian, V.: Equilibration processes in the warm-hot intergalactic medium. SSRv 134, 141 (2008)

    ADS  Google Scholar 

  9. Campana, S., Romano, P., Covino, S., et al.: Evidence for intrinsic absorption in the Swift X-ray afterglows. A&A 449, 61 (2006)

    Article  ADS  Google Scholar 

  10. Cen, R., Ostriker, J.P.: Where are the baryons? II. Feedback effects. ApJ 650, 560 (2006)

    Article  ADS  Google Scholar 

  11. Chieffi, A., Limongi, M.: Explosive yields of massive stars from Z = 0 to Z = Zsolar. ApJ 608, 405 (2004)

    Article  ADS  Google Scholar 

  12. de Plaa, J., Werner, N., Bleeker, J.A.M., Vink, J., Kaastra, J.S., Méndez, M.: Constraining supernova models using the hot gas in clusters of galaxies. A&A 465, 345 (2007)

    Article  ADS  Google Scholar 

  13. Diemand, J., Kuhlen, M., Madau, P.: Clumps and streams in the local dark matter distribution. Nature 454, 735 (2008)

    Article  ADS  Google Scholar 

  14. Gallerani, S., Salvaterra, R., Ferrara, A., Choudhury, T.R.: Testing reionization with gamma-ray burst absorption spectra. MNRAS 388, L84 (2008)

    ADS  Google Scholar 

  15. Gottardi, L., et al.: Proc. ASC (2010, in press)

  16. Greiner, J., Krühler, T., Klose, S., et al.: The nature of “dark” gamma-ray bursts. A&A 526, A30 (2011)

    Article  ADS  Google Scholar 

  17. Heger, A., Woosley, S.E.: Nucleosynthesis and evolution of massive metal-free stars. ApJ 724, 341 (2010)

    Article  ADS  Google Scholar 

  18. Jakobsson, P., Levan, A., Fynbo, J.P.U.: A mean redshift of 2.8 for Swift gamma-ray bursts. A&A 447, 897 (2006)

    Article  ADS  Google Scholar 

  19. Kawai, N., Yamada, T., Kosugi, G., Hattori, T., Aoki, K.: GRB 050904: subaru optical spectroscopy. GCN 3937, 1 (2005)

    ADS  Google Scholar 

  20. Kilbourne, C.A., Doriese, W.B., Bandler, S.R.: Multiplexed readout of uniform arrays of TES X-ray microcalorimeters suitable for constellation-X. Proc. SPIE. 7011, 701104 (2008)

    Article  Google Scholar 

  21. Loeb, A., Ferrara, A., Ellis, R.S.: First Light in the Universe. Springer (2008)

  22. McCammon, D., Almy, R., Apodaca, E., et al.: A high spectral resolution observation of the soft x-ray diffuse background with thermal detectors. ApJ 576, 188 (2002)

    Article  ADS  Google Scholar 

  23. Natalucci, L.; Feroci, M.; Quadrini, E., et al.: Design of a CZT gamma-camera for GRB and fast transient follow-up: a wide-field-monitor for the EDGE mission. Proc. SPIE 6686, 66860T (2007)

    Article  Google Scholar 

  24. Nicastro, F., Zezas, A., Drake, J., et al.: Chandra discovery of a tree in the X-ray forest toward PKS 2155-304: the local filament? ApJ 573, 157 (2002)

    Article  ADS  Google Scholar 

  25. Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., Maeda, K.: Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424 (2006). doi:10.1016/j.nuclphysa.2006.05.008

    Article  ADS  Google Scholar 

  26. Paerels, F.B.S., Kaastra, J., Ohashi, T., Richter, P., Bykov, A., Nevalainen, J.: Future instrumentation for the study of the warm-hot intergalactic medium. SSRv 134, 405 (2008)

    ADS  Google Scholar 

  27. Schindler, S., Diaferio, A.: Metal enrichment processes. SSRv 134, 363 (2008)

    ADS  Google Scholar 

  28. Salvaterra, R., Della Valle, M., Campana, S., et al.: GRB090423 at a redshift of z ~ 8.1. Nature 461, 1258 (2009)

    Article  ADS  Google Scholar 

  29. Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., Bromm, V.: Low-mass relics of early star formation. Nature 422, 869 (2003)

    Article  ADS  Google Scholar 

  30. Smith, S.J., Bandler, S.R., Brekosky, R.P., et al.: Development of position-sensitive transition-edge sensor x-ray detectors. IEEE Trans. Appl. Supercond. (2009). doi:10.1109/TASC.2009.2019557

    Google Scholar 

  31. Snowden, S.L., Egger, R., Freyberg, M.J.: ROSAT survey diffuse x-ray background maps. II. ApJ 485, 125 (1997)

    Article  ADS  Google Scholar 

  32. Springel, V., Frenk, C.S., White, S.D.M.: The large-scale structure of the universe. Nature 440, 1137 (2006)

    Article  ADS  Google Scholar 

  33. Takei, Y., Ursino, E., Branchini, E., et al.: Studying the warm-hot intergalactic medium in emission. ApJ (2010). arXiv:1011.2116

  34. Ursino, E., Branchini, E., Galeazzi, M., et al.: Expected properties of the two-point autocorrelation function of the IGM. MNRAS 413 (2010). doi:10.1111/j.1365-2966.2011.18597.x

  35. Viel, M., Haehnelt, M.G., Springel, V.: Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra. MNRAS 354, 684 (2004)

    Article  ADS  Google Scholar 

  36. Werner, N., de Plaa, J., Kaastra, J.S.: XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096. A&A 449, 475 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The team likes to express its appreciation for the support of Astrium UK for the present study. Earlier studies, which also confirmed the feasibility of this concept were carried out by Thales/Alenia and NASA/MSFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Willem den Herder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Herder, JW., Piro, L., Ohashi, T. et al. ORIGIN: metal creation and evolution from the cosmic dawn. Exp Astron 34, 519–549 (2012). https://doi.org/10.1007/s10686-011-9224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9224-7

Keywords

Navigation